
Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 1 of 96 Version 7.1 Version 7.1
© Copyright 2012, the Members of the COMET Consortium

COntent Mediator architecture for
content-aware nETworks

European Seventh Framework Project FP7-2010-ICT-248784-STREP

Deliverable D3.3
Prototype Implementation and System

Integration Interfaces for the Content Mediation
System

The COMET Consortium

Telefónica Investigación y Desarrollo, TID, Spain
University College London, UCL, United Kingdom
University of Surrey, UniS, United Kingdom
PrimeTel PLC, PRIMETEL, Cyprus
Warsaw University of Technology, WUT, Poland
Intracom SA Telecom Solutions, INTRACOM TELECOM, Greece

© Copyright 2012, the Members of the COMET Consortium

For more information on this document or the COMET project, please contact:

Spiros Spirou
INTRACOM TELECOM, spis@intracom.com

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 2 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Document Control

Title: Prototype Implementation and System Integration Interfaces for the Content
Mediation System

Type: Public

Editor(s): George Petropoulos

E-mail: geopet@intracom.com

Author(s): George Petropoulos, Sergios Soursos (INTRACOM TELECOM), David Flórez
Rodríguez (TID), Wei Koong Chai, Ioannis Psaras, Stuart Clayman, Marinos
Charalambides (UCL), Andrzej Beben, Jaroslaw Sliwinski (WUT)

Doc ID: d3.3_v7.1.doc

AMENDMENT HISTORY

Version Date Author Description/Comments

v0.1 01/06/11 George Petropoulos First version, ToC, CME template

v0.2 08/06/11 George Petropoulos CP, CRE contribution

v0.3 14/06/11 Jaroslaw Sliwinski RAE contribution

v0.4 24/06/11
David Florez, George Petropoulos

CC, CS contribution, CME, CP, CRE updates

v1.1 30/06/11 George Petropoulos Updated version for decoupled approach system release v1.1

v1.2 20/09/11 George Petropoulos New ToC including coupled approach

v2.0 02/12/11 George Petropoulos Updated CME, CP, CRE contributions for decoupled approach v2.0

v3.0 06/02/12 Wei Koong Chai, George Petropoulos Summary, Coupled approach contribution, Decoupled approach
overview, integration procedures and technologies contribution

v3.2 15/02/12 Wei Koong Chai, David Florez Updated contributions in decoupled and coupled approach

v4.0 20/02/12 George Petropoulos Final version

v5.0 20/02/12 David Flórez Final Version for submission

v6.0 23/04/12 George Petropoulos Updated ToC

v6.1 08/05/12 Wei Koong Chai, David Florez, Andrzej
Beben

Contributed to implementation choices and Ipv6 deployment

v6.4 10/05/12 George Petropoulos Integrated contributions, updated Conclusions section

v6.5 15/05/12 Sergios Soursos, George Petropoulos Updated contribution and comments

v6.6 22/05/12 David Flórez, Ioannis Psarras Review and comments

v7.0 24/05/12 George Petropoulos Final version

V7.1 01/06/2012 David Flórez Final Version ready for submission

Legal Notices
The information in this document is subject to change without notice.
The Members of the COMET Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the COMET Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 3 of 96 Page 3 of 96
© Copyright 2012, the Members of the COMET

Table of Contents

1 Executive Summary 6

2 Introduction 7

3 Decoupled Approach Overview 8

3.1 Entities 8

3.2 Interfaces 11

3.2.1 IPv4/IPv6 deployment 12

3.3 System Deployment 12

4 Coupled Approach Overview 14

4.1 Entities 14

4.2 Interfaces 15

4.3 System Deployment 15

5 Decoupled Approach Entities 19

5.1 Content Mediation Entity 19

5.1.1 Description of overall functionality 19

5.1.2 Controller 20

5.1.3 Resolver 26

5.1.4 Decision Maker 28

5.1.5 DB 30

5.1.6 Path Manager 35

5.1.7 Server Manager 42

5.1.8 Admin 44

5.2 Content Resolution Entity 49

5.2.1 Description of overall functionality 49

5.2.2 Interfaces 49

5.2.3 Design 50

5.2.4 Testing and Test scenarios 50

5.3 Content Publisher 50

5.3.1 Description of overall functionality 50

5.3.2 Interfaces 51

5.3.3 Design 53

5.3.4 Testing and Test scenarios 56

5.4 Content Client 56

5.4.1 Description of overall functionality 56

5.4.2 Interfaces 57

5.4.3 Design 57

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 4 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.4.4 Testing and Test scenarios 59

5.5 Server Network Monitoring Entity 59

'''''''''''''''''''''''''''''''''''''' '''' '''''''''''''' '''''''''''''''''''''''''''''

'''''''''''''''''''''''' '''''''''''''''''''''''''''' ''''''''''''''''''''''''''

'''''''''''''''''''''''' '''''''''''''''''''''' '''''''''''''''''

''''''''''''''''''''''''

''''''''''''''''''''''''''' '''''''''''''''''''

''''''''''''''''''''''''''''''''''''' ''''' ''''''''''''''' '''''''''''''''''''''''''''''''''''

''''''''''''''''''''''''''''''

''''''''''''''''''''''''' '''''''''''''''''''''' '''''''''''''''''

6 Coupled Approach Entities 71

6.1 Content Resolution and Mediation Entity 71

6.1.1 Description of overall functionality 71

6.1.2 Interfaces 71

6.1.3 Design 73

6.1.4 Testing and test scenarios 76

6.2 Content Publisher 78

6.2.1 Description of overall functionality 78

6.2.2 Interface 79

6.2.3 Design 79

6.2.4 Testing and test scenarios 80

6.3 Content Client 80

6.3.1 Description of overall functionality 80

6.3.2 Interface 80

6.3.3 Design 80

6.3.4 Testing and test scenarios 81

7 Conclusions 82

8 References 83

9 Abbreviations 84

10 Acknowledgements 85

11 Appendix 86

11.1 Application and Transport Protocol codification 86

11.1.1 Application Protocol 86

11.1.2 Transport Protocol 86

11.2 Interfaces specification 87

11.2.1 CME-CC 87

11.2.2 CME-RAE 88

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 5 of 96 Page 5 of 96
© Copyright 2012, the Members of the COMET

11.2.3 '''''''''''''''''''''''' 89

11.2.4 CME-CAFE 90

11.2.5 inter-CME 91

11.2.6 '''''''''''''''''''' 92

11.3 Databases Specification 93

11.3.1 '''''''''''''' '''''''''''''''' 93

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 6 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

1 Executive Summary

This deliverable documents the final and detailed engineering and implementation work of the
COMET project with respect to the development of the Content Mediation Plane (CMP) of the
COMET prototype. These activities have been carried out following the architecture design
provided in D2.2 [1], as well as the final description and specification of CMP mechanisms
described in D3.2 [3]. The deliverable presents the final CMP entities, the comprising components
and interfaces, as implemented in the final releases for the Decoupled and Coupled approaches.

More specifically, in Sections 3 and 4, the overall architectural design for the prototype
implementation of Decoupled and Coupled approaches is presented respectively. The CMP entities
are identified, along with their components and interfaces. A component diagram depicts their
interconnection, accompanied by a list of the available interfaces and a deployment diagram which
illustrates how the designed architectures are materialized. Both sections briefly describe the
technologies used to develop CMP entities, as well as the motivation behind each implementation
choices and interfaces’ design, while specifying whether there are any theoretical constraints for
deployment of COMET to system to IPv4, IPv6 or mixed network environments.

In Sections 5 and 6, we proceed with a more detailed analysis of the architecture, respectively for
the two approaches. For each entity present in the CMP, we first provide a high-level description of
the functionality in place and the entity’s break down in components. Then, on a per-component
basis, we provide a detailed description of the functionality, the interfaces, the structure (class
diagram), the behaviour (sequence diagram) and the validation tests conducted is included, acting
like a high-level documentation of the prototype’s source code.

Section 7 summarizes this report, providing the high-level reasoning behind all implementation
choices. In addition, it is highlighted that the COMET prototype would require certain
optimizations in order to be deployed in production environments, as well as that it is compatible
with IPv4/IPv6, but not mixed, environments. Finally, in the Appendix, additional information
about interfaces’ specification is included.

Details about the implementation work performed on the CFP entities are not included in this
deliverable, but in D4.3 [5]. In addition, the integration technologies and procedures used to
develop, integrate and test the COMET software, as well as information about the system-wide
validation tests and system releases, will be included in forthcoming deliverable “D5.1 –
Integration of COMET Prototype and Adaptation of Applications”.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 7 of 96 Page 7 of 96
© Copyright 2012, the Members of the COMET

2 Introduction

The overall objective of the COMET project is to define and deliver a novel content-aware Internet
architecture aiming to simplify content access, distribution and delivery in a network-aware
manner. This architecture was described in D2.2 [1] and follows a 2-plane approach for mediating
content requests and delivering content with increased Quality of Service (QoS) and experience
(QoE). It consists of the Content Mediation Plane (CMP) that offers a unified interface for content
access and publication, while it’s responsible to gather and disseminate all required server and
network resources for content consumption, and the Content Forwarding Plane (CFP) which is in
charge of the delivery of content. Both planes collaborate to achieve network and server awareness
to ensure optimal content delivery across the Internet.

During the first 2 years of the project, 2 approaches for content naming, resolution and delivery
were defined and implemented, the Decoupled one, following the current Internet paradigm where
the aim is to build a content-based resolution framework that is readily deployable in the current
Internet with minimal disruption and the Coupled one, which proposes a revolutionary content-
aware Internet architecture, aiming to change the way Internet works today from the root, breaking
some of the design principles of the original Internet.

This deliverable focuses on the CMP elements and mechanisms of the COMET architecture, which
were initially defined in D3.1 [2] and finalized in D3.2 [3], and were implemented during the
second year by the WP3 team of the COMET project. It aims to provide a detailed documentation
of the implementation work, describing all implemented CMP entities, components, interfaces and
mechanisms for both approaches of the defined COMET architecture.

In the first 2 chapters of the present deliverable (chapters 3 and 4, respectively), a justification of
the technologies used is provided, so as to make clear the decisions taken when implementing the
system. Moreover, an architectural overview of each approach is respectively provided, presenting
the implemented CMP entities, components and interfaces, using UML component diagrams, while
providing information on how each approach is going to be deployed, using UML deployment
diagrams.

In chapters 5 and 6, all implemented entities, components, interfaces and functionalities are
presented in more details. Each sub-section presents an overview for each entity or component,
describes its respective classes, methods and structure and provides the detailed description of its
functionality, using sequence diagrams, as well as the implemented self-contained tests, used to
validate its functionality.

Finally, conclusions section provides a brief summary of current deliverable and provides
conclusions on COMET prototype’s IPv4/IPv6 compatibility and deployment in production
environments.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 8 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

3 Decoupled Approach Overview

3.1 Entities

Figure 1 presents the component diagram for all entities of the Decoupled approach at the CMP
level, namely:

 the Content Mediation Entity (CME),

 the Content Resolution Entity (CRE),

 the Content Publisher (CP),

 the Content Client (CC),

 the Server and Network Monitoring Entity (SNME), and

 the Content Server (CS).

In addition, the 2 interfaces of CME with the CFP entities (RAE and CAFE) are presented, without
providing the internal structure of each entity, which is instead defined and presented in D4.3 [5].

Figure 1: Decoupled approach component diagram

Each entity’s and component’s functionality and internal structure, as well as their interfaces are
also presented in Section 3.2 and described in Chapter 5.

The CME is the key entity of the CMP, responsible for efficient and rapid content request
mediation, coordination of and interaction with almost all other COMET entities. The CME was
required to be as light-weight as possible, in order to handle high loads without facing any
performance issues. Java was chosen as the programming language for CME prototype, due to its
lack of limitations, OS independence, ease of prototyping and developers’ familiarity. However,
C++ could be selected in the future if there is a requirement for developing and deploying CME for
production environment, due to its higher performance. There were a few options for the
framework on which CME would be based on (application servers such as Jboss AS [19] and
Glassfish [20], or network frameworks, such as Jboss Netty [8] and Apache MINA [18]). JBoss
Netty was selected, as it is a stable, flexible and lightweight Java New I/O (NIO) Client Server
Socket framework, with quick startup (comparing to application servers) and high performance,
enabling a big number of connections. Approaches referring to application servers such as Java

CS

SNME

CME

ControllerResolver

Decision Maker

Path Manager

Server Manager

CME DB

Client

cc-cme

CRE

cre

Admin

rae-cme

RAE

inter-cme

SAS

cme-snme

CAFE

cme-cafe

SNME DB

SIC

SMA

cs-snme

cmedb

snmedb

CP

sm1

pm1pm2pm3pm4pm5

res1

dm1

inter-cme-client

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 9 of 96 Page 9 of 96
© Copyright 2012, the Members of the COMET

Web Services (i.e., used by JBoss AS and Glassfish) were avoided for two reasons: i) CME is a
network entity and not an application that runs on top of the network and ii) Java Web Services
technology uses long and “heavy” messages for the transfer of application-specific and not
network-level information.

For the web interface of the Admin component, an embedded Jetty web server [9] was used; this
was based on the fact that it is lightweight and easily deployable. Other lightweight (embedded)
web servers could also be used instead, as long as they can be easily integrated in the Netty
platform. Regarding the database, there were a few choices, but open-source MySQL [10] was
preferred, since it’s highly stable and flexible, and deployable to any OS. However, any other
database can be used in the future, as an ORM framework (Hibernate [21]) was chosen to be the
middleware between the business logic of CME and the database.

For the name resolution system, the Handle protocol was selected, as it is an established content-
centric and secure framework appropriate for the resolution and management of digital objects.
Following its IETF standards, the Handle System provides the server software, implemented in
Java, as well as the required client libraries available in Java and C. CRE is actually a Handle
System name server, implemented in Java, with a Berkeley database for storing, updating and
removing content records. Berkeley database is the default option when deploying a Handle System
name server; however it can be easily integrated with MySQL if higher performance is required in
the future. Alternative options for the resolution system could involve the design and
implementation of proprietary systems and protocols, which would not however strengthen the
exploitation capabilities of the resulting prototype, due to cross-platform compatibility issues.

The CP was implemented as a web application in order to be easily accessed by any web browser. A
standalone Jetty web server was selected to host the CP web app, because it is lightweight and has
comparable performance to Tomcat. JSF and RichFaces [22] were used to develop the web pages,
because of their wide range of AJAX components. However, in the future, the consortium might
choose to integrate CP into existing applications, by using the CP API for automatic content record
creation, update, deletion and other CP-related functions. There are no real limitations for the
selection of the technologies used in the design and construction of the web pages, as long as the
rendering time of the resulting pages are acceptable by the end users. RichFaces is considered to be
a wide-spread JSF framework with good overall performance.

The basic idea behind the implementation of CC was the development of a lightweight piece of
software, targeted to the OS where it is intended to run, so that it can take advantage of the system
native resources without the installation of extra pieces of software other than the CC. In other
words, the CC uses the available by the system software to consume the delivered content, based on
the type of the content and the default application specified by the system. For prototyping
purposes, the selected OS was Microsoft’s Windows, owing to its ubiquity; however, the entire
development could be easily ported to other operating systems. Because of the intended simplicity,
and in order to avoid the performance problems of interpreted languages like Java, the language
used in the CC implementation was C++, which is high level, multiplatform and OOP, and enables
the creation of binary executables for the target OS than can be directly launched from command
line.

''''''''' '''''''''''' '''''''''''''''''''''''''' ''''' '''''''' '''''''''''''''''''''''''''''''''' '''' ''''''' '''''''''' ''''''''''''''''''''' '''' ''''''' '''' ''''' ''''''''''''''''''''''' ''''
''''''''''''''''''''''''' ''''''''''''''''' ''''''''''''''''' '''''''' ''''''''' '''''''' '''''''' ''''''''''''''''''' ''''''' ''''''''''''' ''''''' ''''''''' '''' ''''''' '''''''''' '''' ''''''
'''''''''''''''''''' '''''''''''''''' ''''''''''''''' ''''''''''' ''''''' ''''''''''''' ''''''''''' ''''''''''''''''' ''''''''''' ''' ''''''''''' '''''''''''''''' ''''' '''''''''''''''''''' ''''''''
''''' ''''''''''''' ''''' ''''''''''''''' '''''''''' ''''''' '''''''''''''''''''''''''''' '''''''''''''''''''''''''' ''''''' ''''''''''' '''''''' '''''''''''''''''''''''''''''' ''''' '''''''''''''
''''''''' ''''''' ''''' ''''''''''''' ''''' '''''''''''''' ''''''' ''''''''''''''''''''''''' '''' ''''''' '''''''''' ''''''''' '''''''''''''''''''''' ''''''' '''''''' ''''''''' '''''' '''''''''''''''
''''''''''''' '''''''' ''''''''''' '''''''''''''''''''' '''''''' ''''''''''''' '''' '''''''''''''''' '''''''' '''''''''''' '''''''' '''' '''''' '''''''' ''''''''' ''''' ''''''''''''' ''''''''''
''''''''''''''''''''''''' ''''''''' '''''' ''''''' ''''''''''''' '''''' ''''''' ''''''''''''''''' ''''''''''''''''' '''''' '''''''''''''''''' '''''''''''''''''''''''''' '''''''' ''''' '''''''''''
'''''''''''''''''''''''' '''''''''''' ''''''' ''''''''''' ''''' ''''''''''''''' '''''''''''''' '''''' '''' '''''''''''''''''''' ''''''''' '''''' ''''''''''''''' ''''' ''' ''''''''''''''' ''''''''
''''''''''''' ''''''''''''''''' ''''''' '''''''''''''''' ''''' ''' ''''''''''' '''''''''''''''''''''' ''''''''''''' '''''''''''''''''''' ''''''''' '''''''' '''''''' '''''''''''''''' ''''' '''
''''''''''''' ''' ''''''''' '''''''''''' ''''''''''' ''''''''''''''''' '''' '''''''''''''''''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 10 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''' ''''''''''''''' '''''''''''''''' '''' ''''''''' '''''''''''''''''' ''''''''''''''''''''''' '''' ''''''''''' ''''' ''''''''''''''''''''''''''''''''''' '''''' ''''''''''''''''' '''''''''
''''''''''''' ''''''''''''' '''''''''''''''''' ''''''''' '''''''' '''''''' ''''''''''''''''''' ''''''''' ''''''''''''''''' ''''''''' '''''''''''' ''''''''''''''''''' '''''''''''''''' ''''''''' '''''''
'''''''''' '''' '''''''' ''''''''''''''' ''''''''''' ''''''' ''''''''''' '''' ''''''''' '''' ''''''' ''''''''''''''''''' '''''''''''''''' '''''''' '''''''' '''''''''''''''' '''''' '''''''''''''
'''''''''''' '''''''''''''''' ''''''''' ''''''''''''''''' ''''''''''''''''' '''''' '''''''''''' ''''' '''''''''''''''' '''''''''' '''''''''''''''''''''' ''''''''''' '''''''' ''''''''''''''''''''
''''''''''''''' '''' ''''''''''''''''' ''''' ''''''''''' '''' '''''''''' ''''' ''''''''''' '''''''''''''' ''''' '''''''' '''''''''''' '''''''' ''''''''''''''''''' '''''''' '''''''''''''''' '''' '''''
''''''''''''''''' ''''' ''''''''''''''''''''''''''' ''''''''''''' '''''''' ''''''''' '''''''''''''''''''''' ''''''' ''''''' ''''''''' ''''''''''''''''''' ''' ''''''''' ''' ''''''' '''' ''''''
'''''''''''''''''' ''''''''' ''' '''''''''''' '''''''''''''''''''' '''' '''''''''''' ''''' '''''''''' '''''''''''''''''''''''''' ''''''''''' '''''''' ''''''''''''''''''''' ''''''''' '''''''''''' ''''
'''''''' ''''''''''''''''' ''''''''''''' '''''''''' ''''''''' ''''''''''''''''''''''''''' ''''' ''''''''' ''''''' ''''''''' '''''''''''''''''' '''''' ''''''''''' ''''' ''''' '''''' '''''''''''''
''''''''' '''' ''''''''''''''''''''' '''''''' '''''''' ''''''''''' '''''' ''''''''''''''''' '''' '''''''''''''' '''''''' ''''''''' ''''''''''''''''' ''''''' ''''''''''''' ''''''''''''''''''''''''''''''
'''''' ''''''''''''' ''' '''''''''''''''''''' ''''''''' '''''''''''''''' ''' ''''''''' ''''''''''' '''''''''' ''''''''''''''''' ''''' ''''''''''''''''''''''''''''

The RAE is implemented in C++ as standalone self-contained entity with protobuf [12] interfaces
to CME and cooperating RAEs. RAEs are responsible for creation and management of content
delivery paths thus they process large amount of data describing these paths. The C++ language
was chosen because it is OOP and provides efficient resource management. A more in-depth
rationale behind the choice of C++ for RAE deployment is presented in D4.3 [5].

CAFE is basically responsible for forwarding data packets carrying content, thus it needs to be very
efficient. To achieve this goal, basic elements of CAFE (i.e. cafe_forward, cafe_intercept) are
implemented as loadable Linux kernel modules. A more in-depth rationale behind the choice of
used technologies for CAFE deployment is presented in D4.3 [5].

Table 3-1 summarizes the functionalities and technologies used for each entity.

Table 3-1: CMP Entities and Technologies

Entity Functionality Technologies Reference

CME Content request mediation, name resolution,
decision process, server awareness, path
storage, discovery, provisioning and
configuration and CAFE configuration.

Java
JSF, RichFaces,
Netty, Hibernate
Jetty, MySQL

Section 5.1

CRE Content record storage and retrieval Java
Handle System,
Berkeley DB

Section 5.2

CP Content record creation, update and deletion Java
JSF, RichFaces
Jetty

Section5.3

CC Content request, content consumption. C++
Web Browser
Windows

Section 5.4

''''''''''''' '''''''''''''''''' '''''''''''''''' ''''''''' '''''''''''''''' ''''''''' '''''''''''''''' '''''''''
'''''''''''''''

''''''''''''''' ''''''

CS Providing content, server status monitoring Java
Sigar
VLC and Apache

Section 5.6

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 11 of 96 Page 11 of 96
© Copyright 2012, the Members of the COMET

RAE NLRI exchange C++
Boost
SQLite

Deliverable 4.3 [5]

CAFE Content forwarding Python and C
Linux

Deliverable 4.3 [5]

3.2 Interfaces

Table 3-2 details the interfaces shown in the component diagram of Figure 1. 3 types of protocols
were used: Proprietary, Protobuf [12] and Handle protocol [6]. The motivation behind each
protocol choice is presented below.

CC-CME '''''''' '''''''''''''''''''' interfaces are based on the exchange of binary messages over UDP. The
rationale behind this decision was the implementation of a lightweight protocol, free from the
packet overhead usually associated to connection oriented protocols. Besides, the messages were
structured in fields of predefined length and position in order to reduce to a minimum the size of
the commands exchanged in the both protocols. Lastly, both protocols were designed to carry both
IPv6 and IPv4 IP addresses, enabling the related entities to be deployed in both environments.

Inter-CME, RAE-CME, ''''''''''''''''''''''''' and CAFE-CME interfaces are realised using Google's Protocol
Buffers (protobuf). protobuf was chosen since it is a lightweight, simple and efficient mechanism
for serialization of structured data. In addition, protobuf can be easily integrated with JBoss Netty,
with higher performance and more robust implementation for most programming languages, over
similar protocol-definition platforms for network communication (such as Apache Thrift, JSON,
etc.). A more in-depth rationale behind the choice of protobuf for RAE-CME and CAFE-CME
interfaces is also presented in D4.3 [5].

For CP-CRE and CME-CRE interfaces, the Handle protocol was chosen, since it is content centric,
supporting security and access control, and both TCP and UDP, without any limitations on records’
size.

Table 3-2: List of interfaces

Interface ID Entity/Com
ponent
providing
the
interface

Entity/Comp
onent using
the interface

Purpose Protocol Reference

Inter-CME CME CME Path discovery, path
configuration, path
provisioning, server
awareness

Protobuf Section
5.1.2.2.3

CC- CME Controller CC Content request and
response

Proprietary Section
5.1.2.2.1

RAE- CME Controller RAE Path and provisioning
information sent by RAE

Protobuf Section
5.1.2.2.2

''''''''''' '' ''''''''''''''' '''''''' '''''''''''''
'''''''''''''''''''''

'''''''''''''' '''''''''''' '''''''''''''' '''''''''''''''''' '''''''''''''''''
'''''''''''''

CRE CRE Resolver, CP Content Publication and
name resolution

Handle
Protocol

Section
5.2.2

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 12 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

CME -CAFE CAFE Path Manager CAFE configuration Protobuf Section
5.1.6

'''''''''''''''''''''' ''''''' '''''''''''' '''''''''''''' ''''''''''''' '''''''''''''''''''''''' '''''''''''''''''''''''' '''''''''''''''
''''''''''''''''''

3.2.1 IPv4/IPv6 deployment

CME was designed and developed to operate both in IPv4 and IPv6 environments. The JBoss Netty
framework supports and operates smoothly in both environments without any significant
reconfiguration. In addition, there are no specific design limitations for IPv6 support on both the
CP and CRE entities.

Both RAE and stateless CAFEs were designed and developed to operate in dual stack mode [RFC
4213], where either IPv4 or IPv6 addresses could be used. In case of RAE, we used the boost:asio
library for C++, which provides appropriate classes and methods to recognise the version of IP
addresses and adequately handle them. Thanks to this library most of the functionalities required
for dual stack were available in a straightforward way. In case of stateless CAFE, specific filtering
rules were developed in the cafe_intercept module to recognise the IP protocol version and
intercept the IPv4 or IPv6 packets. Moreover, as stateless CAFE also plays the role of IP router, we
configure Linux to support dual stack routing operations (including ospf, ospf3, bgp-4 and mp-
bpg). More details are presented in D4.3 [5].

From the point of view of the CC, ''''''' ''''''''' '''''''''''''' and the interfaces they expose to each other or
third parties, there are not any design constraints that would preclude the proper working with
IPv4 or IPv6. The messages of the defined protocols have been provided with fields able to carry
and identify IP addresses written in both IPv6 and IPv4 formats, which are properly stored in the
databases used by the entities, namely' ''''' ''''''' '''''''''''''.

The only limitation currently affecting COMET is that it can work either on IPv4 or on IPv6 pure
environments but not on mixed ones. That would require “6to4” or similar tunneling techniques to
be in place, which are, however, outside the scope of this project and have been investigated in the
past (e.g., [23]).

3.3 System Deployment

Figure 2 presents the deployment diagram for the decoupled approach in CMP. CME server is a
JBoss Netty server [8], exposing interfaces to Content Client, RAE server deployed in another
machine, and remote CME servers, while an embedded Jetty web server [9] is used by the Admin
component to provide a web interface for the CME administrator to configure CME. In addition, a
MySQL server [10] is used as CME’s database.

On the other hand, a CRE server is a standalone Handle System server [11], launched in another
machine, exposing interfaces to both CME and CP services for content publication and name
resolution.

The CP is a web server providing a graphical user interface to allow the Content Owner/Creator to
publish, update and delete content records, through his computer’s web browser.

The CC is a C/C++ standalone application that is responsible for interacting with the CMP for the
name/content resolution and launches the appropriate client application for the content
consumption.

The CS is a standalone media server offering the desired content, enhanced with a monitoring
agent that provides feedback to the SNME.

''''''''''''''''' ''''''''''''' '''''''''' ''''' '' ''''''''''''''''' ''''''''''''''' ''''''''''''''''''''''''' ''''''' ''''''''''''''''''' ''''''''''''''''' '''''''''''''''' ''''''''' '''''''''''''
'''''''''' '''' ''''' ''''''''' '''''''''''''''' '''''''''''''' '''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 13 of 96 Version 7.1 Version 7.1
© Copyright 2012, the Members of the COMET Consortium

Figure 2: Decoupled approach deployment diagram

User computer

CME server (Netty)

ControllerAdmin

CRE server

CRE Resolver

Admin computer

Web Browser

HTTP

TCP
Server Manager

Path Manager

CME DB CME MySQL Server
TCP

Web browser

UDP

RAE server

RAE

TCP

Remote CME server

TCP

CAFE machine
TCP

SNME Server

SAS SIC

SNME DB
SNME MySQL Server

TCP

TCP

Content Server

SMA

UDP
VLC Streaming Server

CP server

CP

TCP

Publisher computer

web browser
HTTP

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 14 of 96 Version 7.1 Version 7.1
© Copyright 2012, the Members of the COMET Consortium

4 Coupled Approach Overview

4.1 Entities

The specifications of the coupled approach can be found in deliverables D3.1 [2] and D3.2 [3] and
this document mainly focuses on the implementation of a proof-of-concept (PoC) prototype of the
proposed approach. The PoC aims at demonstrating various aspects of the approach at both the
domain and router level.

At the domain level, the implementation focuses on the following:

 To show the coupled approach in resolving content consumption requests across a set of
autonomous domains

 To show the approach to establish the domain-level content delivery paths according to
business relationships and other factors such as ISP local policies

 To show the working of the route optimisation mechanism

At the router level, the implementation focuses on the following:

 To show the interaction between the Content Resolution and Mediation Entity (CRME) at
the CMP level and the CAFE at the CFP level, including both routing awareness and path
configuration

 To show the interworking between CAFEs at the network edge and conventional IP routers
at the network core

In the domain level context, each node will represent a logical domain with integrated CMP and
CFP functionalities. In contrast, at the router level, each node represents a CAFE with the CAFEs
being centrally configured by a dedicated CRME belonging to the same domain. Figure 3 illustrates
the relationships between the domain and router level perspective to the PoC.

Figure 3: Demonstrating the coupled approach at different levels

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 15 of 96 Page 15 of 96
© Copyright 2012, the Members of the COMET

The coupled approach PoC implementation focuses on the functionalities of content manipulation.
The actual coding of the approach is at the level of entity without further separating each of the
entity into further smaller components. As such, the UML component diagram of the coupled
approach simply resembles the entity diagram as shown in Figure 4.

Figure 4: Coupled approach component diagram

4.2 Interfaces

Table 4-1 presents the list of interfaces in the coupled approach implementation. The choice of the
protocol used is dependent on the platform the coupled approach built on (Section 4.3).

Table 4-1: List of interfaces

Interface
ID

Entity/Com
ponent
providing
the
interface

Entity/Com
ponent
using the
interface

Purpose Protocol Reference

Inter-
CRME

CRME CRME Content publication,
content resolution, content
delivery path configuration

Proprietary Section
6.1.2.1

CRME-CC CRME CRME,
content client

Content request Proprietary Section
6.1.2.2

CRME-CS CRME CRME,
content server

Content publication Proprietary Section
6.1.2.3

CRME-
CAFE

CRME CRME, CAFE Content delivery path
configuration

Proprietary Section
6.1.2.4

4.3 System Deployment

The realisation of the coupled approach PoC is at a high-level and the ultimate objective is to
demonstrate the basic content publication, resolution and delivery along with its routing
optimisation functions through a graphical interface. Since it is designed as a disruptive approach,
it is not within our goal to perform protocol-specific implementations.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 16 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

The PoC is built on top of a platform called Very Lightweight Network and Service Platform
(VLNSP) that is architecturally similar to the common virtual networks using hypervisors (e.g.,
Xen) but developed with the basic rationale that most of the features in virtual networks are
unused and thus wasting precious resources. It is kept lightweight while maintaining the simple
router to be simplistic retaining the basic capabilities of a service component. Specifically, the use
of VLNSP is motivated with the following:

 Lower resource utilization – the number of virtual machines that can run on a host is
limited due to the actual resources of the physical machine that need to be shared (such as
the number of cores and the amount of memory available), together with the switching
capabilities of the hypervisor.

 Better scalability – As a direct consequence of the high resource consumption in using full-
scale virtual machines, the scale of the experiment is also very limited.

 Fast Startup speed– the speed of startup of a virtual machine can be quite slow. Although
virtual machines boot up in the same order of magnitude as a physical host, there are extra
layers and inefficiencies that slow them down. Also, if many virtual machines are started
concurrently, then we observe that the physical machines and the hypervisor thrash trying
to resolve resource utilisation.

 Reduced heaviness – the size of a virtual machine image is quite large. A virtual machine
has to have a disc image which contains a full operating system and the applications needed
for the relevant tasks. To start a virtual machine, the operating system needs to be booted
and then the applications started. So every virtualised application needs the overhead of a
full OS.

 Eliminate the issue where 98% of the router functionality not needed– in terms of virtual
networks, and virtualised routers in particular, we observed that 98% of the router
functionality were never utilised in any of the experiments that were run. Although software
routers such as XORP and Quagga allow anyone to evaluate soft networks, the overhead of a
virtual machine, with a full OS, and an application where only 2% is used, seems to be an
ineffective approach for many experiments.

 More networking flexibility – when trying to configure the IP networking of virtual
machines and virtual routers, there are some serious hurdles. The virtual machines do not
talk directly to the network but via the hypervisor. The hypervisor has various schemes for
connecting virtual machines to the underlying network, each of which has different
behaviour. We found that the IP networking configuration and virtual machine to virtual
machine interoperability a hindrance to network topology and network flexibility.

In the light of the above reasons, we implement the coupled approach PoC over VLNSP.

The key idea is to use Java Virtual Machines (JVMs) as virtual machines (VMs) with the
applications and services being small Java apps. Specifically, each JVM is modelled as a network
router. The JVMs will be directly linked to each other according to the topology setup and thus, real
packets will not have to pass through the central hypervisor (as the bottleneck). A physical machine
can now host hundreds of routers as compared to using full-scale VMs where only tens of instances
can be simultaneously running in a machine. This greatly enhances the scalability of the platform.

The platform consists of three major components. The global controller supervises the overall
experiment from the setup provided (in xml scripts), while the local controller, which resides in
each physical machine, passes out the instructions to the routers sent from the global controller
(e.g., instruction to start up or shut down routers on the local machine, initiate or tear down
connections with other machines etc.). The routers (i.e., the JVMs) are logically independent
software entities which can only communicate with each other via network interfaces. The system
can be run in a completely decentralised manner without both the local and global controllers as
they are implemented simply for the conveniences of the management and experimental control.
Figure 5 shows the conceptual view of the platform.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 17 of 96 Page 17 of 96
© Copyright 2012, the Members of the COMET

Figure 5: Conceptual illustration of the platform

The virtual routers hold network selections to the other virtual routers. Like in the real networks,
they are aware of and exchange routing tables to determine the shortest path to each other. Data
packets are sent between routers and queued at input and output interfaces. A system of virtual
ports (similar to the current transport layer ports) is exposed with an interface much alike to
standard sockets. Virtual applications are run on them by listening and sending on these virtual
sockets. Datagrams have typical headers (including information such as source address,
destination address, protocol type, source port, destination port, length, checksum and time to live
(TTL)) which replicated many features of the real IP packets.

Figure 6 shows how the coupled approach entities are linked into the virtual routers. Basically, the
entities can be started on top of any virtual routers and more than one entity can sit on top of one
another. The main entities for the coupled approach are:

 Content resolution and mediation entity (CRME)

 Content-aware forwarding entity (CAFE)

 Content publisher (for this implementation, we assume that the content publisher is also
hosting the content without further intermediaries, i.e. the Content Server)

 Content client

The implementation of these entities will be detailed in chapter6. In the platform, they are
implemented as applications that are managed by the Application Manager (AppM) component.
An Application Socket Multiplexer (ASM) component is in charge of the entities’ datagram
socket(s).

To coordinate experiments, a management console (MC) communicates with the controllers (i.e.,
the global and local controllers aforementioned) via a Management Console Request Protocol
(MCRP). Conceptually, this can be seen as forming a management plane in the platform.

At the networking level, two main components on managing the routing functions are the routing
controller (RC) and routing fabric (RF). Finally, the router-to-router (R2R) component enables
communications between virtual routers.

JVM	

JVM	

Router	
Management	

Router	
Management	

JVM	

Router	

JVM	

Router	
Management	

Router	
Management	

Local	

Controller	

Host	 Host	

Global Controller	

Static	

configurations	
Dynamic	

configurations	

Router	Router	

Router	

Local	

Controller	

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 18 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 6: Coupled approach entities in the virtual router

The coupled approach is implemented as a usr.curling package in Java SE which in turn is
implemented using packages provided by both the VLNSP and the standard Java SE libraries. The
usr.curling package consists of four main classes: Crme, Cafe, ContentServer and

ContentClient, which each communicates with its underlying router using standard UDP
sockets.

R	

JVM	

RC	

RF	 ASM	

R2R	

MC	

Net	

IF	

Coupled
approach Entities	

Datagram	
Socket	

MCRP	

Control	

Li
fe

cy
cl

e	

Net	

IF	

AppM	

Router to Router Connection	

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 19 of 96 Page 19 of 96
© Copyright 2012, the Members of the COMET

5 Decoupled Approach Entities

In this section we go into more detail about the CMP entities of the Decoupled approach. A high
level description of each entity is provided, along with the following list of information, on a per-
component basis: i) a description of the functionality implemented, ii) the interfaces and the
signatures of the implementing functions, iii) a number of class diagrams depicting the internal
structure of the component, iv) a sequence diagram and v) the validation tests carried out for the
specific component.

5.1 Content Mediation Entity

5.1.1 Description of overall functionality

The Content Mediation Entity (CME) is the leading entity of the COMET system, interacting with
almost all COMET entities and making decisions on content, server and path selection. More
specifically, CME has interfaces to:

 Content Client (CC)

 Content Resolution Entity (CRE)

 Routing Awareness Entity (RAE)

 Server Network Monitoring Entity (SNME)

 Content Aware Forwarding Entity (CAFE)

 other Content Mediation Entities (CMEs)

CME’s main functionality includes:

 Receiving and handling content requests from CC

 Resolving received content name to content record, through interacting with CRE

 Selecting the best content server and delivery path, based on pre-configured parameters
and information gathered from other CMEs

 Requesting content server load from attached SNME

 Configuring and provisioning (when necessary) the selected path

 Configuring selected CAFE for content consumption

 Responding to CC with the selected content record parameters

 Receiving network lever routing information (NLRI) from RAE and storing them to its DB

 Web interface for configuration purposes

 DB for storing required configuration and dynamic parameters

Currently, CME consists of the following components which are described further in the following
sections of the document:

 Controller

 Resolver

 Decision Maker

 DB

 Path Manager

 Server Manager

 Admin

CME is implemented as a network entity, and the JBoss Netty Framework [8] was used for its
development, along with all required libraries. Each component is under its respective package and
exposes one or more interface to be called when necessary.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 20 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.1.2 Controller

The controller is the controlling component of CME, exposing interfaces to CC, RAE and other
CMEs, responsible for mediating content requests and controlling all CME components during
content resolution and consumption.

5.1.2.1 Description of functionality

The Controller is the central CME component, containing the following classes under controller
package:

 The Mediator class, which is responsible for mediating and controlling all other
components during content requests.

 CC-CME, RAE-CME and inter-CME interfaces helper classes, which implement the
ChannelPipelineFactory and extend SimpleChannelUpstreamHandler,

OneToOneDecoder and OneToOneEncoder classes of Netty API [8], for parsing and
handling incoming requests from CC, RAE and other CMEs:

o Regarding CME-CC interface, under ccif package exist all encoding
(DNSEncoder), decoding(DNSDecoder) and supporting classes (DNSHeader,

DNSObject, DNSRequest) for parsing incoming messages from CC and forwarding
them to the respective handler (DNSHandler) class, which interacts with the
resolver component to resolve received content name, and the decision maker to
choose the best server. All these classes are included in DNSPipelineFactory

class, implementing the ChannelPipelineFactory provided by Netty.
o On the other hand, in the case of CME-RAE and inter-CME interfaces, no

encoding/decoding classes have been implemented, since protobuf-format messages
are exchanged [12] and protobuf encoders and decoders (ProtobufDecoder,
ProtobufEncoder) are already implemented and provided by Netty [8]. However,

the respective Handler (RAEHandler and CmeHandler) and PipelineFactory
(RAEPipelineFactory and CmePipelineFactory) classes have been
implemented for both interfaces.

 Timer classes under timer package, used for fulfilling required tasks during specific

periods of time. CachedPathsTask and ExpiredStreamsTask are developed, extending
the TimerTask class of java.util package, used for removing paths with expired TTL
and expired streams from local database.

5.1.2.2 Interfaces

5.1.2.2.1 CME-CC interface

CME and CC exchange messages following a DNS-like format, described in Section 11.2.1. The
controller classes and methods which parse and handle received messages are:

 DNSPipelineFactory implements ChannelPipelineFactory

o public ChannelPipelinegetPipeline(): It creates the channel pipeline to

handle incoming UDP, DNS-like packets, using custom DNS-based decoder and

encoder, and attaching the business logic handler at the end.

 DNSDecoder extends OneToOneDecoder

o protected Object decode(ChannelHandlerContextctx, Channel

channel, Object msg): Decodes incoming bytes of DNS-like packets and

returns an object with the required parameters to be handled by DNSHandler.

o private intgetBit(byte[] data, int pos): Returns the integer at

position pos of byte array data.

o private void printStringBin(byte[] in): Prints the integer of a byte

array.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 21 of 96 Page 21 of 96
© Copyright 2012, the Members of the COMET

o private int intFrom2Bytes(byte[] ba): Returns the respective integer

from a byte array of size 2.

 DNSEncoder extends OneToOneEncoder

o protected Object encode(ChannelHandlerContextctx, Channel

channel, Object msg): Encodes the object received from DNSHandler to a

ChannelBuffer object.

o private void setBit(byte[] data, intpos, intval): Sets the bit at a

specified position in byte array data into a required value.

o private byte[] intTo2Bytes(intnum): Returns the respective byte array

of an integer.

o private byte[] appToHex(String app): Returns the byte array of the

received application protocol string, based on COMET specification.

o private byte[] transToHex(String transp): Returns the byte array of

the received transport protocol string, based on COMET specification.

 DNSHandler extends SimpleChannelUpstreamHandler

o public void messageReceived(ChannelHandlerContextctx,

MessageEvent e): This method handles the DNS-like messages, performs

Content Name resolution, decision making and prepares the object that will be

returned to client.

5.1.2.2.2 CME-RAE Interface

Protobuf [12] messages are exchanged in CME-RAE interface, following the .proto file defined in
Section 11.2.2. The controller classes and methods which parse and handle received messages are:

 RaePipelineFactory implements ChannelPipelineFactory

o public ChannelPipelinegetPipeline(): This method creates the channel

pipeline using frame decoder for the TCP packets, protobuf encoder and decoder for

the protobuf messages and the business logic handler.

 RaeHandler extends SimpleChannelUpstreamHandler

o public void messageReceived(ChannelHandlerContextctx,

MessageEvent e): This method handles the GenericRequest protobuf

messages received in the interface.

5.1.2.2.3 inter-CME interface

Protobuf [12] messages are exchanged in inter-CME interface, following the .proto file defined in
Section 11.2.2. The controller classes and methods which parse and handle received messages are:

 CmePipelineFactory implements ChannelPipelineFactory

o public ChannelPipelinegetPipeline(): This method creates the channel

pipeline using frame decoder for the TCP packets, protobuf encoder and decoder for

the protobuf messages and the business logic handler.

 CmeHandler extends SimpleChannelUpstreamHandler

o public void messageReceived(ChannelHandlerContextctx,

MessageEvent e): This method handles the GenericRequestprotobuf

messages received in the interface.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 22 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.1.2.3 Design

5.1.2.3.1 Class Diagrams

Figure 7: CC-CME interface class diagram

Figure 7 presents the class diagram for the CC-CME interface, in which DNSPipelineFactory
implements Netty’s ChannelPipelineFactory and has a DNSHandler (extending

SimpleChannelUpstreamHandler), a DNSDecoder (extending OneToOneDecoder) and a

DNSEncoder (extending OneToOneEncoder). In addition to this, DNSDecoder uses
DNSObject, which contains DNSHeader, DNSRequest and ContentRecord.

eu.comet.hdlrecord

eu.comet.cme.controller.ccif

eu.comet.cme.controller

DNSPipelineFactory

-dnsExecHandler: ExecutionHandler

+getPipeline(): ChannelPipeline

org.jboss.netty.channel.ChannelPipelineFactory
<<interface>>

DNSHandler

-cre: CREClient
-dec: DecisionMaker
~logger: InternalLogger

+handleUpstream()
+messageReceived()

org.jboss.netty.channel.SimpleChannelUpstreamHandler

DNSObject

-buf: ChannelBuffer
-header: DNSHeader
-reply: ContentRecord
-request: DNSRequest

+getBuf()
+setBuf()
+getHeader()
+setHeader()
+getReply()
+setReply()
+getRequest()
+setRequest()

DNSHeader

-ancount: int
-arcount: int
-id: String
-it: int
-nscount: int
-qdcount: int
-qr: int
-rcode: String
-z: String

+getAncount()
+setAncount()
+getArcount()
+setArcount()
+getId()
+setId()
+isIt()
+setIt()
+getNscount()
+setNscount()
+getQdcount()
+setQdcount()
+getRcode()
+setRcode()
+getZ()
+setZ()
+isQr()
+setQr()

DNSRequest

-qclass: int
-qname: String
-qname_length: int
-qtype: int

+getQclass()
+setQclass()
+getQname()
+setQname()
+getQname_length()
+setQname_length()
+getQtype()
+setQtype()

ContentRecord

-serialVersionUID: long
~sources: List<ContentSource>
~cid: String

org.jboss.netty.handler.codec.oneone.OneToOneEncoder

DNSEncoder

-logger: InternalLogger

-appToHex()
-intTo2Bytes()
-printStringBin()
-setBit()
-transToHex()
#encode()

org.jboss.netty.handler.codec.oneone.OneToOneDecoder

DNSDecoder

-logger: InternalLogger

-getBit()
-intFrom2Bytes()
-printStringBin()
#decode()

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 23 of 96 Page 23 of 96
© Copyright 2012, the Members of the COMET

Figure 8: CME-RAE interface class diagram

Figure 8 presents the class diagram of CME-RAE interface, in which RAEPipelineFactory
implements Netty’s ChannelPipelineFactory and has a RaeHandler, which extends Netty’s

SimpleChannelUpstreamHandler. This is also the case for the inter-CME interface, which is
presented in Figure 9.

Figure 9: inter-CME interface class diagram

eu.comet.cme.controller.

RaePipelineFactory

-raeExecHandler: ExecutionHandler
-timenow: String

+getPipeline()

RaeHandler

-timenow: String
~logger: InternalLogger

+handleUpstream()
+messageReceived()

org.jboss.netty.channel.ChannelPipelineFactory
<<interface>>

org.jboss.netty.channel.SimpleChannelUpstreamHandler

eu.comet.cme.controller.

CmePipelineFactory

-cmeExecHandler: ExecutionHandler

+getPipeline()

CmeHandler

~logger: InternalLogger

+handleUpstream()
+messageReceived()

org.jboss.netty.channel.ChannelPipelineFactory
<<interface>>

org.jboss.netty.channel.SimpleChannelUpstreamHandler

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 24 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

In addition, Figure 10 presents the class diagram for the class involved when Controller is invoked.
More specifically, methods from the DecisionMaker, CREClient and PathConfiguration
interfaces are called.

Figure 10: Mediator class diagram

5.1.2.3.2 Sequence Diagrams

In Figure 11 the sequence diagram is presented when a message is received at CME-CC interface.
The DNSEncoder comes first in the DNSPipeline and parses the received bytes, returning a

DNSObject, containing all required information (e.g. content name), which is provided to
DNSHandler. The request is handled by the Controller, which will coordinate all other CME

components. First, it queries the content name from HandleClient and receives the content
record stored in CRE (this is described in resolver component at Section 5.1.3), which is then sent
to DecisionMaker, responding with the selected content source and path (srcpath). If both the
Content Client and selected Content Server belong to the same domain, then PathConfigurator
is invoked twice, to configure path in client- and server-side, otherwise only in client-side. Finally,
DNSHandler receives the selected content record, handled then by the DNSDecoder which writes
the bytes of the response to the channel.

eu.comet.cme.controller

Controller

-cre: CREClient
-dec: DecisionMaker
-pconf: PathConfiguration
-logger: InternalLogger

+mediateRequest()

eu.comet.cme.resolver

CREClient

+query()

eu.comet.cme.decision

DecisionMaker

+select()
+selectBestServerAndPath()
+selectBestServer()

eu.comet.cme.pathmanager

PathConfiguration

+processClientSide()
+sendProcessServerSideRequest()
+processServerSide()
+processClientServerSide()

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 25 of 96 Page 25 of 96
© Copyright 2012, the Members of the COMET

Figure 11: Mediator sequence diagram

In CME-RAE and inter-CME interfaces, when a new message arrives at the
RAE/CmePipelineFactory, ProtobufDecoder handles to decode the received bytes into a

GenericRequest object, which is then received by RAE/CmeHandler, which just responds with
another GenericRequest message back to ProtobufEncoder, returning the bytes sent back to
RAE.

5.1.2.4 Testing and Test scenarios

Testing of controller includes:

 DNSEncoder/Decoder testing, by providing test data and checking their output

(DNSPipelineTest)

 CME-RAE interface testing, by running an instance of CME server and a test Client, sending
test data (RAEPipelineTest)

alt

DNSHandler Controller HandleClient DecisionMakerImpl PathConfigurationImpl

1 : mediateRequest()

2 : query()

3 : rec_record

4 : selectBestServerAndPath()

5 : srcpaths

[if] CC and CS belong to local domain

[else]

6 : processClientSide()

7 : CLIENT_KEY

8 : sendProcessServerSideRequest()

9 : true

10 : processClientServerSide()

11 : KEY

12 : repl_record

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 26 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.1.2.4.1 DNSPipelineTest

DNSPipelineTest implements the following method:

 public void testDNSPipeline(): This method tests DNSDecoder and

DNSEncoder classes. More specifically, test data (raw bytes) are inserted in an embedding
decoder and checks if output is the correct DNSObject. In addition to this, a DNSObject is
provided to an embedding encoder, checking if bytes returned are the ones expected.

5.1.2.4.2 RAEPipelineTest

RAEPipelineTest includes the following methods:

 public static void starting(): Sets up the test CME Server.

 public void testRaePipeline(): Checks the CME's RAE interface by constructing

a VERSION message to be sent by the client and waits for the CME's reply.
 public static void finish(): Finalizes the test CME server.

5.1.3 Resolver

The resolver component is responsible for resolving received content name to content record,
through interacting with the CRE. The content record includes parameters described in section 3.3.

In the context of COMET, the resolver is actually a Handle System client interacting with the CRE,
which in this case is a standalone Handle System server [11], containing all available content
records.

5.1.3.1 Description of functionality

As previously stated, the resolver component interacts with CRE in order to resolve the content
name received from the controller component to its associated content record, stored in the CRE.

The resolver component is actually the HandleClient class, which implements the CREClient
interface and uses the essential methods from the Handle System Java API [11] to perform name
resolution. It also uses available CRE configuration information (IP address and port) stored in the
database.

5.1.3.2 Interfaces

The resolver component implements the CME-CRE interface and consists of the following
methods:

 public ContentRecord query(String cname): The method for querying a content

name from the CRE. It returns a ContentRecord object, containing all defined content
record parameters. In case of unsuccessful name resolution or unavailability of CRE
parameters in the database, returns a null object.

 public Object toObject (byte[] bytes): The method toObject is used to

transform a byte array to a Java object. This method is essential, because content record
parameters are stored as byte arrays in the CRE.

5.1.3.3 Design

5.1.3.3.1 Class Diagrams

Figure 12 presents the class diagram for the resolver component, in which the HandleClient

class implements the CREClient interface.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 27 of 96 Page 27 of 96
© Copyright 2012, the Members of the COMET

Figure 12: Resolver class diagram

5.1.3.3.2 Sequence Diagrams

During content name resolution (Figure 13), the HandleClient performs 2 queries in Config
table in CME database, requesting the IP address and port of root CRE, using methods of
ConfigDAO interface. If the queries are successful, then HandleClient sends a TCP handle
request to root CRE to receive the IP address of local CRE responsible for the received naming
authority and then sends a TCP handle request to local CRE to receive the associated content
record.

Figure 13: Content Name Resolution sequence diagram

5.1.3.4 Testing and Test scenarios

Taking into account that the resolver component implements the CME-CRE interface, it is difficult
to test its direct functionality, because a CRE instance running would be essential. However, failure
tests have been implemented using JUnit [13], to test component’s behavior in case that either the
CRE configuration parameters are not stored in the database, or the CRE is not running. The tests
are performed by the resolverTest class, which includes the following methods:

HandleClient

+logger: InternalLogger

+query()
+toObject()

CREClient
<<interface>>

+query()

HandleClient ConfigDAO root CRE local CRE

1 : getConfigByParam()

2 : cre_ip

3 : getConfigByParam()

4 : cre_port

5 : sendHdlTcpRequest()

6 : local_cre_ip

7 : sendHdlTcpRequest()

8 : received_record

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 28 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 public void testResolutionFailures():The testResolutionFailures() is

the method testing the failure cases in resolver component. It tries to perform name
resolution, while there are no CRE configuration information stored in the database,
returning a null ContentRecord object, it performs name resolution when only the CRE

IP address is stored in the database, successfully returning a null ContentRecord and
finally, performs name resolution, while all CRE configuration information are stored and
CRE is not running, returning a null ContentRecord.

5.1.4 Decision Maker

Decision Maker is responsible for deciding the best server and path, based on the received content
record, information stored in path storage and decision parameters configured in CME database.

5.1.4.1 Description of functionality

Decision Maker contains the multi-criteria decision algorithm to rank available candidates and
select the best of them. It consists of the DecisionMakerImpl class, which implements the
DecisionMaker interface, as well as some helper classes (DecisionMakerUtil,

SourceAndPath, ServerPathCandidate), containing methods and classes used during
decision process.

5.1.4.2 Interfaces

The DecisionMakerImpl class implements the following 2 methods, also defined in the
DecisionMaker interface:

 public ContentRecord select(ContentRecord cr): This method is used to

select the first content source and the first content server from the received content record

and returns a new ContentRecord object with the selected parameters.

 public SourceAndPath selectBestServerAndPath(ContentRecord cr,

String ccip): The method used to select the best Content Source and path, based on

content record parameters, path storage information, servers’ load and decision parameters

configured in CME database, when user’s CoS is higher or equal than BTBE.

 public SourceAndPath selectBestServer(ContentRecord cr, String

ccip): The method used to select the best Content Server, based on servers’ load, when

user’s CoS is equal to BE.

5.1.4.3 Design

5.1.4.3.1 Class Diagrams

Figure 14 presents the class diagram for the Decision maker component, in which the
DecisionMakerImpl class implements the DecisionMaker interface. In addition,
DecisionMakerImpl calls methods from PathDiscoveryImpl and

ServerAwarenessImpl, as well as from the helper classes, included in
eu.comet.cme.decision.util package, DecisionMakerUtil, ServerPathCandidate

and SourceAndPath.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 29 of 96 Page 29 of 96
© Copyright 2012, the Members of the COMET

Figure 14: Decision Maker class diagram

5.1.4.3.2 Sequence Diagrams

Figure 15: Decision process sequence diagram

Figure 15 presents the sequence diagram for the selectBestServerAndPath method of the

decision process, in which DecisionMakerImpl calls the retrievePaths method from the

PathDiscoveryImpl, in order to receive discovered paths and getServersLoadFromEdgeCME
method of ServerAwarenessImpl, to receive loads for all content servers, per their adjacent

CME. Finally, it uses performAlgorithm method to select the best server and path, which is
returned to Controller. In the case of selectBestServer method, it only requires servers’ loads.

eu.comet.cme.decision.impl

DecisionMakerImpl

+logger: InternalLogger

+select()
+selectBestServerAndPath()
+selectBestServer()
+performAlgorithm()

eu.comet.cme.decision

DecisionMaker

+select()
+selectBestServerAndPath()
+selectBestServer()

eu.comet.cme.pathmanager.impl

PathDiscoveryImpl

+logger: InternalLogger

+retrievePathsFromPathStorage()
+retrievePaths()

eu.comet.cme.servermanager.impl

ServerAwarenessImpl

+logger: InternalLogger

+getServersLoadFromEdgeCME()
+getServersLoadFromSNME()

eu.comet.cme.decision.util

DecisionMakerUtil

+sortSourcesList()
+returnBestServerList()
+returnBestServerPathList()
+findContentServerByIp()
+sortContentServersPerCme()
+copySource()

SourceAndPath

+source: ContentSource
+path: List<Integer>

+getSource()
+setSource()
+getPath()
+setPath()

ServerPathCandidate

+sip: String
+path: List<Integer>
+serverLoad: int
+pathlength: int
+iptd: float
+iplr: float
+bw: float
+rate: float

+getSip()
+setSip()
+getServerload()
+setServerload()
+getPathlength()
+setPathlength()
+getIptd()
+setIptd()
+getIplr()
+setIplr()
+getBw()
+setBw()
+getRate()
+setRate()

Number of edge CMEsloop

DecisionMakerImpl PathDiscoveryImpl ServerAwarenessImpl

1 : retrievePaths()

2 : paths

3 : getServersLoadFromEdgeCME()

4 : server loads

5 : performAlgorithm()

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 30 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.1.4.4 Testing and Test scenarios

Decision Maker is currently tested using JUnit [13] for multiple cases and purposes:

 DecisionMakerUtilTest

o public void testListSorting(): Method used for testing if content sources

list is performed correctly.

 DummyDecisionMakerTest

o public void OneSourceMultipleServers(): This method tests the dummy

server selection algorithm for a content record containing one content source with

multiple content servers.

o public void MultipleSourcesMultipleServers(): This method tests the

dummy server selection algorithm for a content record containing multiple content

sources with multiple content servers.

 AlgorithmTest

o public void testRankingAlgorithm(): Method for testing that decision

algorithm is performed correctly.

o public void testSelectServer(): Method for testing that selection of best

content server is performed successfully.

5.1.5 DB

The DB is the database-responsible component, containing all methods for setting up, configuring
and querying parameters from the database. Currently, the DB component handles only 16 tables
in the CME database:

 CACHED_PATHS: Stores information about paths from a prefix to another

 CACHEDPATH_ASES: Stores the actual cached paths (lists of AS numbers)

 CAFES_KEY: Stores assigned key sequence, for a given list of CAFEs

 CAFESKEY_CAFES: Stores the actual list of cafes (list of IP addresses)

 CONFIG: Stores multiple configuration parameters (local CRE IP address and port, local
SNME address and port, administrator’s username and password, CME’s AS number,
BW_AGGREGATE, REFRESH_TIMEOUT, etc.)

 DECISION_PARAMS: Stores aspiration and reservation level values and types for decision
process variables

 PATHINF: Path information received from CME-RAE interface

 PATHS: Paths’ parameters

 PATH_ASES: The actual paths stored (list of AS numbers)

 PROVINF: Provisioning information received from CME-RAE interface

 PREFIXES_CAFES: Associates prefixes to IP addresses of CAFES

 PATHS_CAFES: Maps paths (list of AS numbers) to edge CAFES

 PATHCAFES_ASES: Stores the actual paths

 PATH_KEY: Stores the key for a specific path

 PATHKEY_ASES: Stores the actual path (list of AS numbers)

 USER_COS: Maps users’ IP addresses to their assigned CoS

 STREAM_INFO: Contains configured streams’ information

5.1.5.1 Description of functionality

The DB component is implemented using the Hibernate Framework [14], which is a Java
persistence framework and contains 4 types of classes, the Data Access Objects (DAOs), which
contain all required queries for the respective tables in CME database, the Data Transfer Objects

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 31 of 96 Page 31 of 96
© Copyright 2012, the Members of the COMET

(DTOs) which map to the tables created in the database, the PrefixesUtil class, containing

helper-methods and the HibernateUtil class, which initiates and provides the Hibernate session
factory.

5.1.5.2 Interfaces

All DAOs implemented are described below:

 ConfigDAO

o public void insertAdmin(): Inserts administrator’s username and password

in Config table

o public void insertOneConfig(Config c): Insert one row in Config table

o public void insertMultipleConfig(List<Config> configs): Inserts

multiple rows

o public void deleteAllConfigData(): Deletes all rows

o public String getConfigByParam(String param): Queries a row for a

config parameter name

 DecisionParamsDAO

o public void deleteAllDecisionParams(): Deletes all rows from

Decision_Params table

o public List<DecisionParams> getAllDecisionParams(): Returns all

rows

o public void insertDecisionParams(List<DecisionParams> params):

Insert multiple decision params

o public void insertOneParam (DecisionParams pr): Inserts one row to

table

o public String getTypeByVariable(String var): Returns type for a

decision variable

o public String getResLevelByVariable(String var): Returns

reservation level for a decision variable

o public String getAspLevelByVariable(String var): Returns

aspiration level for a decision variable

 CachedPathDAO

o public void deleteAllCachedPaths (): Deletes all rows

o public void insertOnePathToCache (CachedPath path): Inserts one

row

o public void insertMultiplePathsToCache(List<CachedPath>

paths): Inserts multiple rows

o public List<CachedPath> getAllCachedPaths(): Returns all rows

o public List<CachedPath> getCachedPathsByPrefixesCos (Prefix

src, Prefix dest, String cos): Returns the cached paths for given source

and destination prefixes and CoS

o public void deleteCachedPathsOnTTL(long current_time, long

ttl_millis): Deletes cached paths that their TTL has expired

 CafesKeyDAO

o public void deleteAllCafesKeys(): Deletes all rows of table

o public boolean insertCafeKey(CafesKey ck): Insert one row in the

table

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 32 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

o public List<CafesKey> getAllCafesKeys(): Returns all rows

o public CafesKey getCafeKeyById(String id): Returns a row for a given

row ID

o public boolean updateReservedCapacity(String id, long

bw_aggregate): Updates reserved capacity for a specific CAFEs pair.

 PathKeyDAO

o public void deleteAllPathKeys (): Deletes all rows

o public PathKey getPathKeyById (String id): Returns a row for a given

ID

o public boolean insertPathKey (PathKey pk): Inserts one row

o public boolean updateUsedBW(String id, int br): Updates used bw

with content’s bit rate

o public boolean removeUsedBW(String id, int br): Removes content’s

bit rate from used bw

 PathsCafesDAO

o public void deleteAllPathsCafes(): Deletes all rows

o public boolean insertPathCafe(PathsCafes pa): Inserts one row

o public PathsCafes getPathCafeById(String id): Returns one row for a

given ID

o public List<PathsCafes> getAllPathsCafes(): Returns all rows

o public List<String> getAllPaths(): Returns all stored paths

o public boolean updateReservedCapacity(String id, long bw_aggregate): Updates

reserved capacity for a specific AS path

 PrefixesCafesDAO

o public void deleteAllPrefixesCafes(): Deletes all rows

o public boolean insertPrefixCafe(PrefixesCafes pre): Inserts one

row

o public List<PrefixesCafes> getAllPrefixesCafes(): Returns all rows

o public Prefix checkIPtoLocalPrefixes (String ip): Returns stored

prefix for a given IP address

o public String getCafeByPrefix (Prefix pre): Returns the IP address of

the CAFE assigned to given prefix

 ProvInfDAO

o public void deleteAllProvInfData(): Deletes all rows

o public boolean deleteProvInf (DomainEdge src, DomainEdge dst,

String cos): Deletes row for given source and destination edges and CoS

o public ProvInf getProvInfByEdgesCos (DomainEdge src,

DomainEdge dst, String cos): Returns row for given source and destination

edges and CoS

o public ProvInf getProvInfByPrefixesCos (Prefix src, Prefix

dst, String cos): Returns row for given source and destination prefixes and

CoS

o public ProvInf getProvInfByPrefixEdge (Prefix src, int

dstEdge, String cos): Returns row for given source prefix and destination AS

number and CoS

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 33 of 96 Page 33 of 96
© Copyright 2012, the Members of the COMET

o public void insertProvInf(DomainEdge src, DomainEdge dst,

String cos, QoSParams params): Insert one row to table

 UserCosDAO

o public void deleteAllUserCos(): Deletes all rows

o public boolean insertUserCos(String ip, String cos): Inserts one

row

o public List<UserCos> getAllUserCos(): Returns all rows

o public String getCosByIp(String ip): Returns associated CoS of a user’s

IP address

 StreamInfoDAO

o public void deleteAllStreamInfo(): Deletes all rows

o public void insertStreamInfo (StreamInfo str): Inserts one row

o public boolean deleteStreamInfo (long streamid, String

pathkeyid): Deletes one row for specific id

o public long getAvailableStreamID(): Returns the next available id

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 34 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

5.1.5.3 Design

5.1.5.3.1 Database schema

Figure 16: CME database schema

5.1.5.4 Testing and Test scenarios

JUnit [13] tests were provided for all DAOs of DB component, aiming to check the validity of all
queries used. Therefore, each DAO has its respective test class with simple test data and scenarios.
In addition, JUnit tests for PrefixesUtil class were also provided, to check if helper methods
provide successful results:

 CachedPathTest

o public void testCachedPathQueries()

 CafesKeyTest

o public void testCafesKeyQueries()

 ConfigTest

o public void testConfigQueries()

 DecisionParamsTest

o public void testDecisionParamsQueries()

 PathInfTest

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 35 of 96 Page 35 of 96
© Copyright 2012, the Members of the COMET

o public void testPathInfQueries()

 PathKeyTest

o public void testPathKeyQueries()

 PathsCafesTest

o public void testPathsCafesQueries()

 PrefixesCafesTest

o public void testPrefixesCafesQueries()

 ProvInfTest

o public void testProvInfQueries()

 UserCosTest

o public void testUserCosQueries()

 PrefixesUtilTest

o public void testPrefixesUtilMethods()

 StreamInfoTest

o public void testAllStreamInfoQueries()

5.1.6 Path Manager

Path Manager is the component responsible for handling all path-related operations of CME, and
more specifically, path storage, discovery, configuration and provisioning and CAFE configuration
processes.

5.1.6.1 Description of functionality

All classes of Path Manager exist under pathmanager package and are divided in 3 main
categories:

 Path-related processes’ interfaces and classes implementing them:
o PathStorage and PathStorageImpl, containing methods for handling and

storing messages received in CME-RAE interface
o PathDiscovery and PathDiscoveryImpl, containing methods for retrieving

paths, either from local database or from server-side CME
o PathConfiguration and PathConfigurationImpl, responsible for

configuring selected path, both in client- and server-side CMEs
o PathProvisioning and PathProvisioningImpl, containing methods for

provisioning selected path
o CafeConfiguration and CafeConfigurationImpl, containing methods for

configuring server-side CAFE

 Inter-CME client and helper classes:
o InterCmeClient and its method send(GenericRequest req, String

cmeip), are used for opening a connection with another CME and sending a
request.

o InterCmeHandler extending JBoss Netty’s SimpleChannelUpstreamHandler,
used for handling responses received from other CMEs

o InterCmePipelineFactory, implementing ChannelPipelineFactory,

configuring the pipeline for the InterCmeClient, and including all required
encoders and decoders for protobuf messages.

 CME-CAFE client and helper classes:
o CafeClient and its method send(GenericRequest req, String cafeip),

are used for opening a connection with CAFE and sending a request.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 36 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

o CafeHandler extending JBoss Netty’s SimpleChannelUpstreamHandler, used
for handling responses received from CAFEs.

o CafePipelineFactory, implementing ChannelPipelineFactory, configuring
the pipeline for the CafeClient, and including all required encoders and decoders
for protobuf messages.

 PathManagerUtil and CafeUtil class, containing helper methods for all processes.

 ResourceManager class, containing methods for resource management in CME.

5.1.6.2 Interfaces

 PathStorage

o public void processRAEdata(GenericRequest req): The method

processing GenericRequest messages received by RAE. There are 6 types of

messages that can be processed, RESET, VERSION, INSERT_PROVISIONING,

REMOVE_PROVISIONING, INSERT_PATHS, REMOVE_PATHS.

 PathDiscovery

o public List<CachedPath> retrievePathsFromPathStorage(String

clip, String srvip, String cos): The method called in server-side

domain when "RETRIEVE_PATHS" message is received in CmeHandler.

o public Map<String, List<CachedPath>> retrievePaths(String

ccip, List<String> srvips, String cos, String cmeip): The

method called in client-side domain after successful name resolution. It checks local

db, and if they don't exist, sends a "RETRIEVE_PATHS" request to server-side

CME.

 PathConfiguration

o public List<String> processClientSide(String ccip,

List<Integer> path, String cos): The method used to configure client-

side CME after successful decision process

o public boolean sendProcessServerSideRequest(List<Integer>

path, String ccip, String srvip, String trans_proto, String

trans_port, String cmeip, String br, String cos, List<String>

key): The method used to send and receive process server-side requests and

responses after successful client-side configuration.

o public ProcessServerSideResponse processServerSide

(ProcessServerSideRequest r): The method used to process server-side

CME after successful client-side processing

o public boolean processClientServerSide(List<Integer> path,

String ccip, String srvip, String trans_proto, String

trans_port, String cmeip, String br, String cos): The method

used to process client-side CME when both content server and client belong to local

domain

 PathProvisioning

o public PathKey startPathProvisioning(List<Integer> path,

String cos, List<String> key_client): The method initiating and

finishing Path provisioning in server-side CME, if key for received path does not

exist. It initiates path provisioning process towards client-side CME.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 37 of 96 Page 37 of 96
© Copyright 2012, the Members of the COMET

o public ProvisionPathResponse handleProvisionRequests

(ProvisionPathRequest r): The method handling path provisioning requests

in any CME. It checks if CME is final or transit and responds accordingly.

 CafeConfiguration

o public boolean configureStream(String cafeip, List<Integer>

path, String ccip, String srvip, String trans_proto, int

trans_port, int br, String cos, List<String> key): The method

used to connect to all adjacent CAFEs and collect their expired streams.

o public List<StreamInformation> collectExpiredStreams(): The

method used to configure a stream to the respective CAFE.

 InterCmeClient

o send(GenericRequest req, String cmeip): The method used to send

inter-CME requests to other CMEs and return inter-CME responses.

 CafeClient

o send(GenericRequest req, String cafeip): The method used to send

requests to CAFE and return ACK or NACK response.

5.1.6.3 Design

5.1.6.3.1 Class Diagrams

Figure 17: Path Manager class diagram

Figure 17 presents the class diagram for the Path Manager component. PathStorageImpl,
PathDiscoveryImpl, PathConfigurationImpl, PathProvisioningImpl, and

CafeConfigurationImpl implement their respective interfaces PathStorage,

PathDiscovery, PathConfiguration, PathProvisioning and CafeConfiguration. In
addition, PathDiscoveryImpl uses the InterCmeClient, and PathManagerUtil classes,

eu.comet.cme.pathmanager.impl

PathStorageImpl

+logger: InternalLogger

+processRAEdata()
+getPathsFromProto()
+getQosParamsFromPathProto()
+getQosParamsFromProvProto()

PathDiscoveryImpl

+logger: InternalLogger

+retrievePaths()
+retrievePathsFromPathStorage()
+getCachedPathsFromProtoResponse()
+searchPathsInLocalCache()
+searchPathsInPathStorage()
+getAllPathsFromPathInfList()
+getMin()
+returnEmptyPathsForUnknownServers()

PathConfigurationImpl

+logger: InternalLogger

+processClientSide()
+sendProcessServerSideRequest()
+processServerSide()
+processClientServerSide()

PathProvisioningImpl

+logger: InternalLogger

+startPathProvisioning()
+handleProvisionRequests()
+transitPathProvisioning()
+prepareGenericRequestPathProvision()

eu.comet.cme.pathmanager

«interface» PathStorage

+processRAEdata()

«interface» PathDiscovery

+retrievePaths()
+retrievePathsFromPathStorage()

«interface» PathConfiguration

+processClientSide()
+sendProcessServerSideRequest()
+processServerSide()
+processClientServerSide()

«interface» PathProvisioning

+startPathProvisioning()
+handleProvisionRequests()

CafeConfigurationImpl

+logger: InternalLogger

+configureStream()
+collectExpiredStreams()

«interface» CafeConfiguration

+configureStream()
+collectExpiredStreams()

eu.comet.cme.pathmanager.cmeclient

InterCmeClient

+send()

InterCmeHandler

+getResponse()
+handleUpstream()
+messageReceived()
+exceptionCaught()

InterCmePipelineFactory

+getPipeline()

eu.comet.cme.pathmanager.cafeclient

CafeHandler

+getResponse()
+handleUpstream()
+messageReceived()
+exceptionCaught()

CafeClient

+send()

CafePipelineFactory

+getPipeline()

eu.comet.cme.pathmanager.util

ResourceManager

+checkTotalPathCapacity()
+checkTotalLinkCapacity()
+checkUsedCapacity()
+removeUsedCapacity()

CafeUtil

+protoStringToInt()
+returnLocalCafes()
+listToBytes()
+stringToBytes()
+bytesToString()

PathManagerUtil

+stringToAses()
+asesToString()
+returnMatchingPath()
+returnPathid()
+stringToList()
+listToString()
+checkCcCsInLocalDomain()
+getServerKey()

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 38 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

PathProvisioningImpl invokes methods from InterCmeClient, ResourceManager and

PathManagerUtil classes, PathConfigurationImpl uses InterCmeClient,
ResourceManager and PathManagerUtil classes, while CafeConfigurationImpl calls

methods from CafeClient and CafeUtil classes.

5.1.6.3.2 Sequence Diagrams

Figure 18: Path storage sequence diagram

Figure 18 presents the sequence diagram of the path storage process. The operation is invoked
from CmeHandler, whenever a message is received in rae-cme interface. PathStorage interface
then checks the type of message and performs the requested-by-RAE operation (storage or removal
of path or provisioning information).

Figure 19: Sequence diagram of path discovery in client domain

Figure 19 presents the path discovery process in the domain attached to content client, when there
are no paths stored in local cache. The process is invoked by the Decision Maker component,
through the retrievePaths method of the PathDiscovery interface, and then for all the
content servers within the request, local database is checked for cached paths. When there are no
cached paths, then content servers are grouped per their adjacent CMEs and for each CME, a
request is sent to the inter-CME interface, waiting for a response with discovered paths.

CmeHandler PathStorageImpl

1 : processRAEdata()

number of serversloop

number of cmesloop

DecisionMakerImpl PathDiscoveryImpl InterCmeClient

1 : retrievePaths()

2 : searchPathsInLocalCache()

3 : send()

4 : GenericResponse

5 : discovered_paths

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 39 of 96 Page 39 of 96
© Copyright 2012, the Members of the COMET

Figure 20: Sequence diagram of path discovery in server domain

On the other hand, Figure 20 presents the path discovery process performed in the domain
attached to a content server. Path Discovery process is invoked by CmeHandler whenever a
RETRIEVE_PATHS message is received in inter-CME interface, and the
retrievePathsFromPathStorage method of the PathDiscovery interface is called, aiming
to return all discovered paths stored in local database.

Figure 21: Sequence diagram of path configuration in client domain

CmeHandler PathDiscoveryImpl

1 : retrievePathsFromPathStorage()

2 : searchPathsInPathStorage()

3 : discovered_paths

client and server in different domainsalt

[client and server in the same domain][client and server in the same domain]

Controller PathConfigurationImpl InterCmeClient

1 : processClientSide()

2 : CLIENT_KEY

3 : sendProcessServerSideRequest()

4 : send()

5 : OK

6 : OK

7 : processClientServerSide()

8 : OK

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 40 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 22: Sequence diagram of path configuration in server domain

Figures Figure 21 and Figure 22 present the path configuration processes in client and server
domains accordingly. More specifically, path configuration is initiated in client domain by the
Controller, which calls the processClientServerSide method of PathConfiguration

interface (if content client and server belong to the same domain) or the processClientSide
method and then sends a PROCESS_SERVER request to the server-side CME by the send method
of InterCmeClient (if content client and server belong to different domains).

In the server-side CME, path configuration is invoked by the CmeHandler whenever a
PROCESS_SERVER request is received in inter-CME interface and then the
processServerSide method is called, aiming to find or produce the key of the selected path and
finally configure the CAFE, adjacent to content server. Initially, local database is checked for stored
keys, and if there aren’t any, path provisioning process is initiated through the
startPathProvisioning method of PathProvisioning interface. Then, ResourceManager
is invoked in order to check if there are available resources for the selected path, and if successful,
the key_server is produced via PathManagerUtil class. If all operations are successful, then
CAFE configuration is invoked, and a response is sent back to CmeHandler.

pk = nullif

check = trueif

key_server!=nullif

CmeHandler PathConfigurationImpl PathKeyDAO PathProvisioningImpl ResourceManager PathManagerUtil CafeConfigurationImpl

1 : processServerSide()

2 : getPathKeyById()

3 : pk

4 : startPathProvisioning()

5 : pk

6 : checkUsedCapacity()

7 : check

8 : getServerKey()

9 : key_server

10 : configureStream()

11 : cafeconf

12 : ProcessServerSideResponse

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 41 of 96 Page 41 of 96
© Copyright 2012, the Members of the COMET

Figure 23: CAFE configuration sequence diagram

In Figure 23, CAFE configuration process is presented, in which configureStream method of

CafeConfiguration interface is invoked, and a CONFIGURE_STREAM request is sent to CAFE,
using the send method of CafeClient class.

5.1.6.4 Testing and Test scenarios

Since path-related operations involve inter-CME or CME-CAFE communication in most cases,
JUnit [13] tests were provided for cases when required data exist in local CME. 7 classes were
created for these tests:

 PathConfigurationTest

o public void testProcessClientSide(): used for testing successful client-

side configuration.

o public void testSendProcessServerSideRequest(): method for testing

path configuration interface when no server-side CME is running.

o public void testProcessClientServerSide(): used for testing client-side

configuration when both client and server belong to the same domain.

o public void testProcessServerSide(): method used for testing server-

side configuration.

 CafeUtilTest

o public void testCafeUtilMethods(): method for testing all methods of

CafeUtil.

 PathManagerUtilTest

o public void testPathManagerUtilMethods(): method for testing all

methods of PathManagerUtil.

 ResourceManagerTest

o public void testResourceManagerMethods(): method for testing all

methods of ResourceManager.

 CafeConfigurationTest

o public void testCafeConfigurationMethods(): method for testing all

methods of CafeConfiguration interface.

 PathDiscoveryTest

o public void testPathDiscoveryAtServerSide(): method for testing if

path discovery is performed correctly in server-side CME.

PathConfigurationImpl CafeConfigurationImpl CafeClient

1 : configureStream()

2 : send()

3 : OK

4 : OK

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 42 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

o public void performLocalCacheQueries(): method for testing path

discovery in client-side CME, when cached paths exist in local db.

 PathProvisioningTest

o public void testStartPathProvisioning(): method for testing

initialization of path provisioning.

o public void testHhandleProvisionRequests(): method used to test

handling of path provisioning requests.

5.1.7 Server Manager

Server Manager is the CME component responsible for gathering servers’ loads, either from CMEs
adjacent to servers or directly from attached SNME.

5.1.7.1 Description of functionality

ServerAwarenessImpl is the key class of the component, implementing the ServerAwareness
interface, while snmeclient package contains the SnmeClient, SnmeHandler and

SnmePipelineFactory classes, which are used to contact SNME in the CME-SNME interface.

5.1.7.2 Interfaces

 ServerAwareness

o public Map<String, Integer> getServersLoadFromEdgeCME

(List<String> srvips, String cmeip): The method that handles client-

side requests and sends to inter-CME interface for server loads. In case that CME is

attached to the server, then loads are requested directly from local SNME.

o public List<ServerLoadResponse> getServersLoadFromSNME

(List<ServerLoadRequest> slreqs): The method that sends and receives

server load queries to CME-snme interface. It may return null if no response

received or no snme info exist in db.

 SnmeClient

o ResponseServerStatus send(QueryServerStatus req, String

snmeip, String snmeport) throws Exception: The method used to send

requests to SNME and return responses back to Server Manager component.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 43 of 96 Page 43 of 96
© Copyright 2012, the Members of the COMET

5.1.7.3 Design

5.1.7.3.1 Class Diagrams

Figure 24: Class diagram of Server Manager

Figure 24 presents the class diagram of the Server Manager component. ServerAwarenessImpl
class implements the methods of the ServerAwareness interface and also uses the SnmeClient

and InterCmeClient classes for connecting to SNME and remote CME accordingly, as well as
their respective helper classes.

5.1.7.3.2 Sequence Diagrams

Figure 25: Sequence diagram of server awareness in client domain

eu.comet.cme.servermanager.impl

ServerAwarenessImpl

+logger: InternalLogger

+getServersLoadFromEdgeCME()
+getServersLoadFromSNME()

eu.comet.cme.servermanager

ServerAwareness

+getServersLoadFromEdgeCME()
+getServersLoadFromSNME()

eu.comet.cme.servermanager.snmeclient

SnmeClient

+send()

SnmeHandler

+getResponse()
+handleUpstream()
+messageReceived()
+exceptionCaught()

SnmePipelineFactory

+getPipeline()

eu.comet.cme.pathmanager.cmeclient

InterCmeClient

+send()

InterCmeHandler

+getResponse()
+handleUpstream()
+messageReceived()
+exceptionCaught()

InterCmePipelineFactory

+getPipeline()

number of cmesloop

DecisionMakerImpl ServerAwarenessImpl InterCmeClient

1 : getServersLoadFromEdgeCME()

2 : send()

3 : GenericResponse

4 : loads

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 44 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 26: Sequence diagram of server awareness in server domain

Figure 25 and Figure 26 present the sequence diagrams of server awareness process in client and
server domains accordingly. In the client domain, server awareness is initiated by
DecisionMakerImpl through getServersLoadFromEdgeCME method of the

ServerAwareness interface (for all edge CMEs within the content record), which then sends a

SERVER_LOAD request to remote CME, using the send method of InterCmeClient.

In the server-side domain, CmeHandler receives the SERVER_LOAD request and calls the

getServersLoadFromSNME method of the ServerAwareness interface, aiming to send
ServerStatus requests to adjacent SNME, using the SnmeClient class. Finally, received loads

are returned to CmeHandler.

5.1.7.4 Testing and Test scenarios

JUnit [13] tests were provided for failure case of server awareness component (missing CME-
SNME communication, etc.) from ServerAwarenessTest class:

 public void testNoResponseFromCME(): Tests the case when there is no
communication between CME and SNME.

5.1.8 Admin

Admin is the web administration component of the CME, responsible for configuring required
parameters for almost all operations performed by CME:

 Password update (Profile Update)

 Root CRE IP address and port (Name Resolution)

 Cached Paths TTL (Path Storage)

 Maximum number of server/path candidates and decision process variables (type,
aspiration and reservation level) (Decision Process)

 SNME IP address and port (Server Awareness)

 Tables for IP Prefixes-CAFEs mapping, AS peering-CAFEs mapping and CAFEs peering-key
mapping, as well as aggregate value for BW, refresh time and CME’s AS number (Path
Configuration)

 Users’ IP addresses and CoS mapping (Content Resolution)

5.1.8.1 Description of functionality

Admin component contains 2 types of classes under package admin, the WebSrv class which starts
the embedded Jetty web server [9] and deploys the admin web application and the Controller

CmeHandler ServerAwarenessImpl SnmeClient

1 : getServersLoadFromSNME()

2 : send()

3 : ResponseServerStatus

4 : ServerLoadResponses

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 45 of 96 Page 45 of 96
© Copyright 2012, the Members of the COMET

class under admin.web package containing all methods for handling parameters inserted by the
administrator in the web interface.

5.1.8.2 Interfaces

Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35
present some screenshots from CME Administration web page for logging in, updating
administrator’s password, configuring root CRE’s IP address and port, cached paths TTL, decision
variables, SNME configuration, path configuration properties and users’ CoS respectively. CME
administrator can access the webpage at http://{cme.ip.address}:8090/CME/index.jsf.

Figure 27: Login page

Figure 28: Profile Update

Figure 29: root CRE configuration

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 46 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 30: Cached paths TTL configuration

Figure 31: Decision variables configuration

Figure 32: SNME configuration

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 47 of 96 Page 47 of 96
© Copyright 2012, the Members of the COMET

Figure 33: Path Configuration parameters configuration

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 48 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 34: User-CoS mapping

Figure 35: Configuration overview

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 49 of 96 Page 49 of 96
© Copyright 2012, the Members of the COMET

5.1.8.3 Design

The Controller class consists of the following methods, which handle inserted parameters from
user:

 public String login (): used for handling username and password from login page
and authenticating administrator

 public String configurecre(): method for configuring CRE IP address and port

 public String updatepassword(): method for updating administrator’s password

 public String addusercos(): method for handling users’ IP addresses and CoS
mapping

 public String deleteallusercos(): method for deleting all existing users-CoS
mappings

 public String addpathstorage(): used for configuring cached paths TTL

 public String adddecisionparams(): used for configuring decision variables

 public String configuresnme(): used for configuring SNME properties

 public String addprefixcafe(): method for handling prefixes-CAFEs mapping

 public String deletet1(): method for deleting all prefixes-CAFEs mappings

 public String addt2(): used for handling AS paths-CAFEs mapping

 public String deletet2(): used for deleting all AS paths-CAFEs mappings

 public String addt3(): used for handling CAFEs-key mapping

 public String deletet3(): used for deleting all CAFEs-key mappings

 public String addpathconfparams(): method for configuring path configuration
properties

 public String logout(): used for logging out from web interface

5.1.8.4 Testing and Test scenarios

No particular self-contained tests have been implemented for testing CME web application. Manual
tests were performed during software’s validation, in order to prove that it works as expected.

5.2 Content Resolution Entity

5.2.1 Description of overall functionality

CRE is the COMET entity responsible for storing content records and responding to content name
resolution requests during content consumption. It has interfaces to:

 CME

 CP

CRE is a Handle System server, using the Handle System API [11] to store and update content
records and resolve content names, hence its internal structure and procedures are transparent to
COMET. 2 types of CREs are introduced and implemented, local CRE, containing all content
records for one or more naming authorities and root CRE, containing the IP address of the local
CRE per naming authotiry.

5.2.2 Interfaces

As previously stated, CRE interacts with:

 Resolver component of CME during name resolution

 CP during content publication

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 50 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

For both operations, CRE exposes an interface at specific TCP or UDP port (default is 2641). Both
Resolver component of CME and CP, use the defined Handle System protocol [6][7] in their
interaction with CRE.

5.2.3 Design

CRE source code consists of one package, eu.comet.cre.handleserver, in which 4 classes are
included: SimpleSetup, DBTool, ConfigCommon and StartServer, which extend particular
classes from the Handle System API (as depicted in Figure 36). Attributes and methods are not
shown in the class diagram, since they were implemented from Handle System.

SimpleSetup class is responsible for setting up the CRE and creating all required resources and

files to run and uses certain methods from the supporting classes DBTool and ConfigCommon,
while StartServer class is used to run and shutdown the CRE.

Currently, CRE stores content records and responds to content name resolution requests for
naming authorities specified in its configuration files.

Figure 36: CRE class diagram

5.2.4 Testing and Test scenarios

Currently, there are no self-contained tests for the CRE.

5.3 Content Publisher

5.3.1 Description of overall functionality

CP is the COMET entity responsible for content publication. More specifically, it is used to create,
update and delete content records from the CRE database. It is a web application which interacts
with a local CRE, using required classes and methods from the Handle System API [11].

Content Publisher application can be accessed through any web browser, by any user with
administrative credentials. It is assumed that a Content Provider has already registered to COMET
its naming authority (e.g. “com.gmail@user”) and its admin handle (e.g. com.gmail@user/ADMIN)
is stored in its respective local CRE database, including administrator’s username and password.

eu.comet.cre.handleserver

SimpleSetup

net.handle.server.SimpleSetup

DBTool ConfigCommon

net.handle.hdllib.ConfigCommonnet.handle.apps.db_tool.DBTool

StartServer

net.handle.server.Main

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 51 of 96 Page 51 of 96
© Copyright 2012, the Members of the COMET

Content Record parameters consist of:

 Content Name (CN)

 Content ID (CID)

 List of Content Sources:
o MIME type
o Class of Service (CoS)
o Bit Rate (BR)
o IP Transfer Delay (IPTD)
o IP Loss Ratio (IPLR)
o Priority
o Application protocol
o Transport protocol
o Transport port
o List of Content Servers:

 IP address
 Server path
 CME IP address

5.3.2 Interfaces

CP currently has 2 interfaces:

 CP-CRE interface, for handle system authentication, content record registration, deletion or
update

 Web interface, in order to be accessed through every web browser at
http://{cp.ip.address}:8090/Publisher/index.jsf.

Figure 37, Figure 38, Figure 39, Figure 40 and Figure 41 present features of the Content Publisher
web interface, for logging in, creating, deleting, updating content records, and processing batch
files.

Figure 37: Login page

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 52 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 38: Content Record Creation

Figure 39: Content Record Deletion

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 53 of 96 Page 53 of 96
© Copyright 2012, the Members of the COMET

Figure 40: Content Record Update

Figure 41: Batch file processing

5.3.3 Design

Content Publisher source code consists of 3 packages:

 eu.comet.cp.handle, containing:

o HandleClient class, which includes all methods for making Handle system

requests [11]:

 public AbstractResponse sendRequest(AbstractRequest

request) throws HandleException, IOException: The method

for sending a request to CRE using the Handle System protocol

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 54 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 public int authenticate(String adminHandle, String

password) throws HandleException, IOException: The method

for authenticating a user

 public List<String> listhandles(String adminHandle,

String password) throws HandleException, IOException: The

method for requesting all the content records under a specific naming

authority

 public int createHandle(String handle, ContentRecord cr,

String adminHandle, String password) throws

HandleException, IOException: The method for creating a content

record

 public int deleteHandle(String del_handle, String

adminHandle, String password) throws HandleException,

IOException: The method for deleting a content record

 public int editValue(String handle, String handle_type,

int idx, Object obj, String adminHandle, String

password) throws HandleException, IOException: The method

for editing a content record

 private static AdminRecord getAdminRecord(String

adminHandle): The method for creating a Handle System Admin record

 public static byte[] toByteArray (Object obj): The method

for transforming an object to byte array

 public static byte[] getBytesFromFile(File file) throws

IOException: The method for transforming a file to byte array

 public String[] getDataFromFileInWar() throws

IOException: The method for getting configuration parameters from the

text file inside the war file

 public String convertStreamToString(InputStream is)

throws IOException: The method for transforming an inputstream to a

string

 public Object toObject (byte[] bytes): The method for

transforming a byte array to an object

 public ContentRecord getRecord(String qhandle) throws

HandleException, IOException: The method for getting the stored

content record for a content name

o CidGenerator class, which includes the methods for generating the CID:

 public String generate (String cn): The method for generating

the Content ID from content name

 public String returnHashedString(String S): The method for

providing the hash of a given string

o BatchProcessor class, with all methods used in batch file processing:

 public Map<String, List<String>> readfile(String

filename): The method for reading the batch file and returning the results

of the batch processing

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 55 of 96 Page 55 of 96
© Copyright 2012, the Members of the COMET

 public static void readLines(List<String> lines) throws

HandleException, IOException: The method for reading the lines of

the batch file

 private static void processPreviousRequest(String

action, String content_name, List<ContentSource>

sources) throws HandleException, IOException: The method

for processing a request

 eu.comet.cp.web, containing the controlling class of web application:

o Controller class, containing all required methods for handling inserted

parameters from web interface and perform the required handle system operations:

 public String login () throws HandleException,

IOException: The method for authenticating administrator in CP

 public String gotoCreate():The method used for redirecting to

insert_record page

 public String addserver():The method used for adding a server in

already created content source

 public String previewrecord():The method for adding all content

source and servers' parameters in content record and redirecting to

preview_record page

 public String addsources():The method for redirecting to a new

insert_record page

 public String createrecord() throws HandleException,

IOException: The method for creating a content record

 public String gotoEdit() throws HandleException,

IOException: The method for redirecting to edit_record page for the

selected content name

 public String logout():The method for logging out from CP

 public String delete() throws HandleException,

IOException: The method for deleting the content record for the selected

content name

 public String deletesource():The method for deleting the target

content source from the content record

 public String deleteserver():The method for deleting the target

content server from the target content source of the content record

 public String addnewserver():The method for adding a content

server in the target content source of the content record

 public void listener(UploadEvent event) throws

Exception: The method for uploading the batch file and processing it

using Batch Processor

 public String gotoMain() throws HandleException,

IOException: The method for redirecting to main page

 public static void copy(File src, File dst) throws

IOException: The method for copying a file to another file

 eu.comet.hdlrecord, containing:

o ContentRecord: The content record object

o ContentSource: The content source object

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 56 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

o ContentServer: The content server object

Figure 42 presents the class diagram of Content Publisher.

Figure 42: Content Publisher class diagram

5.3.4 Testing and Test scenarios

Current version of Content Publisher does not include any self-contained tests, since they would
require an instance of CRE up and running.

5.4 Content Client

5.4.1 Description of overall functionality

Content Client is responsible for:

 Requesting a particular content from CME,

 Handling Content Record parameters received from CME,

 Building the direct request to the Content Server.

eu.comet.hdlrecord

eu.comet.cp.handle

eu.comet.cp.web

Controller

-serialVersionUID: long

+login()
+gotoCreate()
+previewrecord()
+addserver()
+addsources()
+createrecord()
+gotoEdit()
+delete()
+deletesource()
+logout()
+deleteserver()
+addnewserver()
+listener()
+gotoMain()
+copy()

CidGenerator

+generate()
+returnHashedString()

HandleClient

+getAdminRecord()
+authenticate()
+convertStreamToString()
+createHandle()
+deleteHandle()
+editValue()
+getBytesFromFile()
+getDataFromFileInWar()
+getRecord()
+sendRequest()
+listHandles()
+toByteArray()
+toObject()

ContentRecord

-serialVersionUID: long
+cid: String
+sources: List<ContentSource>

+getCid()
+setCid()
+getSources()
+setSources()

ContentSource

-serialVersionUID: long
+content_type: String
+cos: String
+priority: int
+qos_constraints: List<String>
+traffic_descriptors: List<String>
+app_protocol: String
+trans_protocol: String
+trans_port: String
+servers: List<ContentServer>

+getContent_type()
+setContent_type()
+getCos()
+setCos()
+getQos_constraints()
+setQos_constraints()
+getTraffic_descriptors()
+setTraffic_descriptors()
+getPriority()
+setPriority()
+getApp_protocol()
+setApp_protocol()
+getTrans_protocol()
+setTrans_protocol()
+getTrans_port()
+setTrans_port()
+getServers()
+setServers()

ContentServer

+serialVersionUID: long
+ip_address: String
+server_path: String
+server_load: String
+cme_id: String

+getIp_address()
+setIp_address()
+getServer_path()
+setServer_path()
+getServer_load()
+setServer_load()
+getCme_id()
+setCme_id()

BatchProcessor

+readfile()
+readLines()
+processPreviousRequest()

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 57 of 96 Page 57 of 96
© Copyright 2012, the Members of the COMET

5.4.2 Interfaces

5.4.2.1 CC-CME Interface

CC and CME exchange messages following a DNS-like format, described in Section 11.2.1. The
Content Client classes and methods which parse and handle sent/received messages are:

 class UDPSocket : public CommunicatingSocket : public Socket

o intUDPSocket::sendTo(const void *buffer, intbufferLen, const

string &foreignAddress, unsigned short foreignPort):

It creates an UDP socket to send DNS-like packets to the server.

o intUDPSocket::recvFrom(void *buffer, intbufferLen, string

&sourceAddress, unsigned short &sourcePort) :

It creates an UDP socket and waits for incoming DNS-like packets from the server.

 class ContentHandler

o string createRequestMessage(char *qname):

It creates a data buffer following the specification of DNS-like format in order to send the

Content Request to CME.

o void parseResponseMessage(u_char *recvBuffer):

It parses the incoming datagram packet from CME in order to get correctly the parameters

of the requested Content Record.

5.4.3 Design

5.4.3.1 Class Diagrams

Content Client is a C/C++ based application. Due to the fact that part of the code is developed with
C which is a non object-oriented language, the class diagram cannot show the entire relations
between the different entities of the application. Figure 43 presents content client’s class diagram
including Socket, CommunicatingSocket and UDPSocket classes, which contain the
methods to create and handle sockets in CC and CME communication.

ContentHandler class contains the methods for parsing sent/received messages and building
the direct URL to the content.

The diagram also contains the different data structures st_header, st_query,

st_query_str, st_answer and st_answer_str of the message, based on the CC-CME
interface specifications.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 58 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 43: Content Client class diagram

5.4.3.2 Sequence Diagrams

During content request, Content Client requests a particular content from the CME, including its
content name or content ID. At this point, we assume that an end-user has found the content name
or the content ID of the content he wants to consume.

After this message, the CME will start the Content Resolution process and respond to Content
Client with the selected content record parameters.

Upon receiving the answer from CME, the Content Client extracts Content Server’s IP address, the
application/session protocol, the transport protocol, the Content Server’s port and path to the
content, from the message, and with these parameters, builds the direct request to the Content
Server. More specifically, the Content Client extracts these parameters from the answer received
from the CME and forms the URL with these parameters, which is passed to the Operating System
in order to launch the appropriate application (e.g. web browser) to send a request to the chosen
server.

The process of the Content Request is depicted in the sequence diagram of Figure 44:

Figure 44: Content Client sequence diagram

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 59 of 96 Page 59 of 96
© Copyright 2012, the Members of the COMET

5.4.4 Testing and Test scenarios

COMET repository hosts the self-contained tests for the Content Client.

The components of the tests are the following:

 Test Client application.

 Dummy Server application.

Test Client application works at the same way that Content Client application but sends a request
to the Dummy Server. The Dummy server application checks the correct format of the request
message, based on CC-CME interface specification, and sends a pre-defined response message.
Test Client receives and parses the incoming message and builds the full URL for content
consumption and compares it with a pre-defined URL.

5.5 Server Network Monitoring Entity

''''''''''''''''''''''''''''''' '''' '''''''''''''' '''''''''''''''''''''''''''

''''''''' ''''''''''''' '''''''' ''''''''''''''''''' '''''''''''''''''''''''' ''''''''''''' '''''''''''''''' '''' '''''''' ''''''''''' '''''''''''''''''''''' '''''' ''''''''''''''''''''' '''''''''''''
'''''''''''''''''''''''''' '''''''''''' '''''''''''''''''' '''''''''''''''''' ''''''''''''''''''''' ''''''''''' '''' ''' ''''''''''''''''''' ''''''' '''''''''''''''''' ''''''''
'''''''''''''''''''''''''' '''' ''''''''''' ''''''''''''' '''''''''''''''''''' ''''''''''''' '''''''' '''''''''''''''''''' '''''

'''''''''''''''''' '''''''''' ''''''''''''''''''''''''' '''''''''''''''''''

''''''''''''''''''' ''''''''''''''' '''''''''''''''''' '''' ''''''' ''''''''''''''''''''' ''''''''''''''''''''''''' ''''''''''''' ''''''' ''''''''''''''''''' '''''''''''''''' ''''' ''''''''
'''''''''''''''''''' ''''''''''''''''' '''' '''''''' '''''''''''''''''''''

''''''''''''''''''''''' '''''''''''''''''''''''''' ''''''''''''''''''''

''''''''''''''''''''''''''''''''''' ''''' '''''''''''''''''''''''

'''''''''''''' ''''''''''''''''''''''''' '''''''''''''''''''' '''''''''''' '''' '''''''''''''''''''''''' '''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 60 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

'''''''''''''''''''''''''''''''''''

'''''''''''''''''''''''''''''''''' ''''''''''''''''''

'''''''''''' '''''''''''''''''''''''''' '''''''''''''''''''' ''''''''''' ''''''''''''''''''''' ''''' '''''''''''''' '''''''' ''''''''''''''' '''''''''''''''''''''' '''''''''''' '''''''''''''' '''''
''''''' '''''''''''''''''' ''''''''''''''''''''' ''''''''''''''''''' ''' '''''''''''''''''' '''''''''''''' '''''''''''''''''''''' ''''' '''''''''''''''' ''''''''''''''' '''''''' ''''''''''''''
''''''''' '''''''''''''''''' '''''''''' '''''''' ''''''' ''''''''''''''''' '''''''''

'''''''' '''''''''''''''''''

''''''''''''''' ''' '''''''' '''''''''''''' ''''' '''''''''''''''' ''''''''''''''''''''' ''''''''''''''''''' '''''''''' '''''''''''''''''''''''' ''''''''''''' '''''''''''''''

''''''''''''''' '''''''''''''''' '''''''''''' ''''''' ''''''''''''''''''''' ''''''''''''''''''''' ''''''''' '''''''''''''' ''''''' '''''''''''''''''''' ''''''''''''''''''' '''''''''''

''' '''''''''' ''''''' '''''''''''''''''' ''''' ''' ''''''''' '''''''''''''''

'''''''' ''''''' ''''''''''''''''''''''

''''''''''''''''''' ''' '''''''''''''''''''''''''''' ''''''''''''' ''''''''' '' '''''''''' '''''''''''''''' ''''''''''''''''''' '''''''''''''' '''''''''''''''''''''''''''''''

'''''''' '''' ''''''''''''''''''''''' ''''''

'''''''''''''''''''' ''''' '''''''''''''''''''''' '''''''''' '''''''''''''''' ''''''''' ''' ''''''''''''''''''''''''''''' ''''''''''''' '''''''''''''''''''' ''''''''''''''

''''''''''''''''''''''''''''''

'''''''' '''''' '''''' ''''''''''''''''''' ''''''''

'''''''''''''''''' ''' '''''''''' '''''''''''' ''''''''' ''' ''''' '''''''

''''''' '''''' '''''' '''''''''''''''''' '''''''

''''''''''''''''''' ''' '''''' '''''' ''''''''' ''' ''''''''' '''''''''''''

'''''''' '''' '''''''

''''''''''''''''''' ''''''''''''''''' '''' ''''''' '''''''''''''' ''''''''''''''''' ''''''''''''''''''''''' ''''''' ''''''''''''''''' ''''''''' ''''''' ''''''''' ''''''''''''''

''''''''''''''' '''''''''''''''''''' ''''' '''''''' '''''''''' '''''' '''''' ''''' '''''''''''''' '''''''''''''''''''''''' ''''' '''''

''''''' ''''' '''''''

'''''''''''''''''''''' '''''''''''''''''' ''''' '''''''' '''''''''''''''' ''''''''''''' '''''' '''''''''''''''''' ''''''''''' '''''''''' '''''''' ''' ''''''''''''''''''''''''''

''''''''''''' '''''''' '''''''' '''''''' ''''''''''''''''''''''' '''''''''''''''' ''''' ''''''''''''' ''''''' ''''''''''''' '''''''''''''''''''''''''''' '''' ''''''' ''''''''''''''

''''''''''''''''''

'''' '''''''' '''''''''''''' ''''''''' ''''' '''''''' '''''''''''''''''' '''''''''''''''''''''' '''' '''''''''''''''''''''' ''' ''''''''''''' ''' '''''''''''' '''''''''''''''''' '''''

'''''''''''''

''''''' ''''''''''''''

''''''''''''''''' ''' '''''''''' ''''''''''''''''' ''''''''''''''''''''''''

'''''''' '''''''' '''''''''''''''''''''''''' ''''''

'''''''''''''' ''' ''''''''' ''''''' ''''''''''''' '''''''''''''''''''''' ''''''''''''''''' ''''' ''''''''''''''''''''''''

'''''''' ''''' ''''''''''''''''''''''''''''' '''''''

'''''''''''''' '' ''''''''' '''''''''''''''''' '''''''' ''''''' ''''''''''''' '''''''''''''''''''' '''''''''''''

''''''' '''' '''''''''''''''''''''''' ''''''

''''''''''''''' ''' ''''''''' '''''''''''''''' ''''''''' ''''''' ''''''''''''''''' ''''''''''''''' '''''''''''''

''''''' '''' ''''''''''''''''''' ''''' ''''''' ''''''

''''''''''''''' ''' ''''''''' ''''''''''''''''''''' ''''''''''''''''' '' ''''''''''''' ''''''''' ''''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 61 of 96 Page 61 of 96
© Copyright 2012, the Members of the COMET

''''''' '''''''' ''''''''''''''''''''' ''''''

'''''''''''''' ''' ''''''''' ''''''''''''' ''''''''''''''''''''''''' ''''' ''' '''''''''''''''

''''''' ''''' ''''''''''''''''''' '''''' ''' '''''''' '''''''

'''''''''

'''''''''''''''' ''' ''''''''' ''''''''' '''''''''' '''''''' ''''''''''''' ''''''''''''''''''''''''' '''' ''' ''''''''''''''

''''''' '''' '''''''''''''''''''' '''''' '''' '''''''' ''''''

''''''''''

''''''''''''''''' ''''''' ''''''''''''' ''''''''''''''''''''''''''' ''''' ''' '''''''''''''''

'''''''' '''' '''''''''''''''''''''''''' '''''''

''''''''' '' ''''''' '''' ''''''' ''''''''''''''' '''''''''''''''''''''' '''' ''''''''

''''''''''''''''''''''''''''

'''''''''''''''''''''''''' '''''''''''''''''

''''''''''''''' ''''''''''''''''''''''''' ''''''''''''''''''' ''''''''''''' ''''''''' ''''''''''''''' ''''' ''''''''' ''''''''''''''''''' ''''''''''''''' '''' ''''''''''''''

'''' '''''''''''''''' '''''' '''''''''''''''''''''' ''''''''''''''''' '''''''''''''''''''''''''' '''''''''
'''''''''''''''''''''''''' '''''''''''' ''''''''''''''''''''' ''''''' '''''''''''''''''' ''''''''' '''''''''''

''''''''' '''''''''''''''' '''''''''' ''''''''''''''''''' '''''' ''''''''''''''' ''''' '''''''' ''''''''''' '''''''''''''''''''

'''''''''''''''' ''''''''''' '''' '''''''''''''''''''''''' '''''' '''''''''''''''''' ''' '''''''' ''''''''''''' ''''''''''''''''''' ''''''' '''''''''

''''''''''''''''''''''' '''''''''''''' '''''''''''' ''''''' ''''''''''''''''''''''''' '''' ''''''''' ''''''''''''''''' ''''' ''''''' ''''''''''''''''' '''''''''
''''''' ''''''' '''''' ''''' ''''''''''''''''''''''' ''''''''''''''' '''''''''''' ''''''''''' ''' '''''''' ''''''''''''' ''''''''''''' '''''''''''''''''''''''''''' ''''' '''''''' ''''''' '''''''''''
'''''''''''''' '''''''''''''''' ''' ''''''''' ''''''''''''''' ''''''''''' ''''''' ''''''''' ''''''''''''''''''''''''''''''
''''''''' '''''''''' '''''''''''' ''''''' ''''''''' '''''''''' '''' ''''''' '''''''''''''''''' ''''' '''''' '''''''''''' '''''''''''' '''''' ''''''''''''''''' ''''''''' '''''''''
'''''''''''' '''''''' '''''''''''''''''' '''''''' '''''''''''''''''''' '''''''' '''''''''''' '''''''''''''''

'''''''''''''' '''''''''' ''''''''''''' ''''''''''''''''''''''''' ''''''''''''''''''''' ''''''' '''''''''''''''''''''' '''''''''' ''''' '''''' '''''''''' ''''''''''''''''

''''''''' ''''''''' ''''''''''''''''' '''' '''''''''''''''''' '''' ''''''''''''''' '''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 62 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''''''' ''''''' ''''''''''''''' ''''''''''''''''''''''''' '''''''''''''''''' ''''''''''' ''''''''''''''''

''''''''''''''''''''''''''''''''''''' ''''''''''''''''''

'''''''' ''''''''''''''''' '''''''' ''''''''''''''' ''''''''' ''''''' ''''''''''''''''' '''''' ''''''''''''''''' '''' ''''''' ''''''''''''''''''''' ''''''''' '''''''''''''' '''''''' ''''''''' '''''''''
'''''' ''''''''''''''''' '''''' ''''' '''''''''''''''''''' '''''''''''''''' ''''''''''' '''''''' ''''''''''''''' ''''''''''' ''''''''''''' '''''''''''''''''''''''''

''''''' '''' ''''''''' ''''''''''''''''' ''''''' '''''''''''''''''' '''''''''''''''''''' '''''''''' '''''''' '''''''''''''''''''' ''''''''''''' '''''''''''''' '''''' ''''''''''''''''''
''''''''''''''''''''''' ''''''' ''''''''''''' '''''''''''''''''''''''''' '''''''''''' ''''''''' '''''''''' ''''''''''''''''' ''''''' ''''''''''''' '''''''''' '''''''' '''''''''''''' '''''''''''''''''
''' '''''''''''' '' '''''''''''''''''''' ''''' ''''''''' ''''''''''''''''''''''' ''''' '''''''' '''''''''' ''''''' '''''''''''''''' '''' '''''''' '''''''''''''''''' ''''' '''''' '''''''''''''
'''''''''' '''''''' '''''''''' '''''' ''''''''''''''''''

'''''''''''''''''''' '''''''''''''''''''' ''''''''' '''''''''''

''''''' '''''''''''''' '''''''''''''''''' ''''' '''''''''

''''''''''''' '''' ''''''' '''''''' ''''''''''' '''''

'''''''''''''' ''''''''' ''''''''''

''''''''''''' ''''''''''''' '''''''''''' '''''''' ''''''

''''''''''''''''''' '''' ''''''''' '''''''' '''''''''''' ''

''''''''''''' '''''''''''''''' ''''' ''''''''''' '''''''''

'''''''''' ''''''''''''' ''''''''''''' ''''''' '''''''''''''

'''''''''''''''''

'''''''''''''''''''''''' '''''''''''''''' '''''''''''''''''''''

'''''''' ''''''''''''''''''''' ''''''''''''''''' ''''''''''''''''

'''''''' ''''''''''''''''''' ''''''''''''''''' ''''''''''''''''

''''' ''''''' ''''''''''''' '''''''' ''''''''''' '''''''

'''''''''''''''' ''''' '''''''''' '''''''''' ''''''''''''' ''''''''

''''''''''''''''' '''''''''' ''''''''' ''''''''' ''''''''

''''''''''''''''''' ''''''''''''''' ''''''''' '''' ''''''''''

''''''' ''''''''''''''''' ''''''''' ''' '''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 63 of 96 Page 63 of 96
© Copyright 2012, the Members of the COMET

'''''''''''''''''' '''''''''' ''''''''''''''''''' ''''''''''''''''

'''''' '''' ''''''''' ''''''''' '''''''' '''''''''' ''''' ''''''''

'''''''''' '''''''''''''''''' ''''''''' ''''''''''''' '''''''

''''''''''''''''''' ''''''''' ''''''''''''''''''' '''''''''''''''''

''''''' ''''' '' '''''''' ''''''' ''''''''''' '''''''''''''''''''''

''''''''' ''''''''''''''' '''''''' ''''''''''' ''''''''''''''''''''

''''''''''' ''''''''' ''''''''' ''' '''''''''' '''''''''''''''''' '''' ''''''''''''''''' '''''''''' '''''''''''' ''''''''' ''''''''''''''' '''''' '''''''''''''''''' ''''''''' ''''''' '''''''''''''
'''''''' '''' ''''''' ''''''''''''''''

''''''''' ''''''''''''''' '''' '''''''' ''''''''''''''''''' ''''''''''''''''' '''''''''' ''''''''' '''''''' '''' '''''''''''''''' ''''' '''''''' ''''''''''''''''''' '''''''''''''''''' ''''
'''''''''''''' ''''''''

'''''''''''''' '''''''' '' '''''''''''''''''' '''''''''''''''''

''''''''''''''''''''''''''''''' ''''''' '''''''' '''''''''''''''''''''

''''''''''' ''''''' '''''''' ''' ''''''' ''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 64 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''''''''''''''' ''''''''''''''''''''' ''''''''''''''

''''''''''''''''''''''''''''''''''''' '''' '''''''''''''''''''''''''''

'''''''''''' ''''''''''''''''''''''' '''''''''''''''' ''''''''''''' '''' '''''''''''''''''''''''' '''''''''

''''''''''''''''''''''''''''''''''''

'''''''''''''''''''''''''''''''''' '''''''''''''''''

''''''''''''' '''''''''''''''''''''''' ''''''''''''''''' ''''''''''''' ''''''''''''''''''''''''' ''''' ''''''''''''' '''''''' ''''''''''' '''''''''''''''''''' ''''''''''''''''''' ''''''''''''''''''
''''''''''''' ''''''''''''''''' ''''''''''''''''''''' '''''''''''''''''''' ''''' ''''''''''''''''' ''''''''''''' ''''''''' '''''''''''''''' '''''''' ''''''''''''''''''' ''''''''''' '''''''' ''''''
''''''''''''''''' '''''''''

'''''''' '''''''''''''''''''''''''

''''''''''''''''' '' '''''''''' '''''''''''''' ''''' '''''''''''''' ''''''''''''''''''' ''''''''''''''''''' '''''''''' ''''''''''

'''''''' '''' ''''''

''''''''''''''''''' ''''''''''''''''' '''' ''''''' '''''''''''''''' ''''''''''''''''' ''''''' ''''''''''''''''' '''''''''''' ''''''''''' '''''''''''''''' ''''''''''''

''''''''''''''''''''''''''' ''''' '''''''' '''''''''''''' '''''''''''''''' '''''''''''' ''''''' ''''''''''''''' '''''''' ''''''''' ''' '''''''''' ''''' ''''''''''''

''''''' ''''''''''''''''

''''''''''''''''' ''' '''''''''' ''''''''''''''''''' ''''''''''''''''''''''''

''''''' '''''''' ''''''''''''''''' ''''''''

'''''''''''''''''''' '''''''' ''''''''''''' '''' ''' '''''''' '''' ''''''''''''''''

''''''''''''''''''''''''''''''

'''''''''''''''''''''''' '''''''''''''''''''

'''''''''''''' '''''''''''''''''''''''' ''''''''''''''' ''''''''''''' ''''''''' ''''''''''''''''' ''''' '''''''' ''''''''''''''''' ''''''''''''''''' '''' ''''''''''' '''

''''''''''''''' '''''''' ''''''''''''''''''''' ''''''''''''''''''''' '''''''''''''''''''''''''' '''''''''

'''''''''''''''''''''''''''''''''' ''''''''''''' ''''''''''''''''''''' '''''''' ''''''''''''''''' ''''''''''

'''''''''''''''''''''''' '''''''''' '''' '''''''''''''''''''''''' ''''''' ''''''''''''''''''' '''''''''''''''''' ''''''''''' '''''''''''' ''''''''

''''''''''''' ''' ''''''''' '''''''''''''' '''''''''''''''' ''''''' '''''''''' ''''''''''''''''''''''''''''' '''''''''''' '''''''''''''''' ''''''''
''''''''''''''''' '''''''' ''''''''''''''''' ''''''''''' ''''''''''''''''''' ''''''''''''''''' ''''''' '''''''''''''''''' '''' '''''''''' ''''''''''''''''''''''''''''' '''''''' ''''''''''' '''''
'''''''' '''''''''''''''' ''''''''''''''''' ''''''''' ''''''''''''''''''''''' '''' ''''''''' ''''''''''' ''''' ''''''''''''''' '''''''''''''''''''''''' '''''''' '''''''''''''''''''''''''''''''
'''''''''''''''''' ''''''' '''''''''''''''''''' ''''' '''''''' ''''''''''''''''' ''''''''''''''''' ''''' '''''''''''''''''''' ''''''''''' ''''''''''' '''' '''''''''''''''
'''''''''''''''''

'''''''' '''''''''' ''''''''''''''''' '''' '''''''''''''''' ''''' '''''''''''''' '''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 65 of 96 Page 65 of 96
© Copyright 2012, the Members of the COMET

''''''''''''''' '''''''' '''''''''''''' ''''''''''''''''''''' ''''''''''''''' '''''''''' ''''''''''''''''''

'''''''''''''''''''''''''''''''''' '''''''''''''''''

''''''''''''''' '''''''''''''''' ''''''''''''''''''''''' '''''''''' ''''''''''''' ''' ''''''''''' ''''''''''''' '''''' ''''''' '''''''''''' ''''' ''' '''''''' '''' ''''''''''''''' '''''''''''''''''
'''''''''' ''''''''''''''''' '''' '''''''''''''''''' ''''' ''''''''' ''''''''''''' '''''''''''''''''' ''''''''' ''''''''''''''''''''''''' '''''''''' ''''''' '''''''''''''' ''''''''''''''''''''
''''''''' ''''''''''''' '''' '''''''''' ''''' ''''''''''''

'''''''' ''''''''''''''' ''''' '''''''' ''''''''''''''''' '''''''''''''''' ''''''''''' '''''''' '''''''' ''' '''''''''''''''''''' ''''' ''''''' '''''''''''''''''' '''''''''''''''' ''''' '''''''''''''
''''''''

''''''''''''' '''''''' ''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''' ''''''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 66 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''''''''''''''''''''' '''''''' '''''''' ''''''''''''''''''''''

'''''''''''' ''''''' ''''''''''''' ''''''''''''''''''''''''' '''''''''''''' '''''''''' ''''''''''' '''''''''''''''''''''''''''' '''''''''''' ''''''''''''' ''''''''' ''''''''''''''''
'' ''''''''' '''''' '''''''''' ''''''''''''''''' ''''''' '''''''''''''''''''

'''''''' ''''''' ''''' ''''''''

''''''''''''''' ''' '''''''''' '''''''' '''''''''''' ''''' ''''''''''''' '''''''' '''''''' '''''''''''

''''''' '''' '''''''''''''''''''''

''''''''' '''''''' ''''''' '''''''''''''''''''' ''' '''''' ''''''''''''''''''''' ''''''''' '''''''' ''''''''''''''''' '''''''''

'''''''' '''' ''''''''''''''''

'''''''''''''''''''' ''''''' '''''''''''''''''''' ''''''''' ''''''''''''''''' '''''''''' '''''''''' ''''' ''''''' '''''''' ''''''''''

'''''''' '''' ''''''''''''''''''''''''''''''

'''''''''' '''''''''' ''''''''' ''''''''''''' ''' '''''''''''''''' '''''''''' ''' ''''''' ''''' '''''''''''''''' ''''''''' ''''''''''''''' ''''''' ''''''''''''' '''''''''''''''''

''''''''''' '''''''' ''''''''' ''''''' ''''''''''' ''''''''''''''''''''''''' ''''' '''''''''' ''''''''''''''

''''''' '''' ''''''''''''''''

'''''''''''''''''''' ''''''''' ''''''''''''''''''' '''''''' '''''''''' '''''''''' ''''' ''''''' ''''''' ''''''''''

''''''''''''''''

'''''''' ''''''''''''' ''''''' ''' ''''''' ''''''''''''''''''' ''''''''''''''''''' '''' ''''''' '''''''''''''''''''''''' '''' ''''''' ''''''''''''''''' ''''''''''''''''' '''''''''''''' ''''''''''''''
''''''' ''''''''' '''''''' '''''''''''''''''''''''''' '''' ''''''' '''''''''' '''''''''''''''' ''''''''' ''''''' '''''''''' '''''''''''''' ''''''' '''' '''''''''''''''''''' '''' ''''''''
'''''''''''''''''' ''''''''''''''

'''''''''''''''''''''''''''''''''''' ''''' '''''''''''''''''''''''''

'''''''' '''''''''''''' ''''''' '''''''''''''''''' '''' ''''' ''' ''''''''''''''' '''''''''''''''''''' ''''''''''''''' ''''''''''' ''''''' '''''''' '''''''''''''''''''''' '''''''''''''''''''' '''''
'''''''''''''' '''''''''''''' ''''''''' '''''''''''' ''''' ''''''' '''''''''' ''''''''''' ''''''''' ''''''''''''''''' '''' ''''''''''''''''' ''''''''''''''''' ''''''' ''''''''''''' ''''''''''''
''''''''''''''''' '''''''''''''''''''''''''''' '''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 67 of 96 Page 67 of 96
© Copyright 2012, the Members of the COMET

'''''''''''''''''''''''''

'''''''''''''''''''''''''''''''' ''''''''''''''

''''''''''''' ''''''' ''''''''''''''' ''''''''''''''''' '''''''''''''''

''''''''''''''''''''' '''''''''''''

'''''''''''''''''''''''''''''' '''' ''''''''''''''' '''''''''''''''''''''''''''

''''''''' '''''''''''''''''''''''''' ''''' ''''''''''''''''' ''''''''''''' '''' '''' ''''''''' '''''''''''''''''''' ''''''''' ''''''''''' ''''''''''' '''''''''''''''''' '''''''''''''
'''''''''''''''''''''' '''''''''' '''''''''''''''' ''''' ''''''''' ''''' '''''''''''''''''''''''' '''''''' '''''''''''''' '''' '''''''' '''''''''''''' '''''''' ''''''''''''''''''' ''''''''''''' ''''
'''' ''''''''''

'''''''''''''''''''''

''''''''''''''''''''''''''''''''''''''' '''' '''''''''''''''''''''''''

'''''''' '''''''''''''''''''''''''''' ''''' '''''' ''''''''''''''' ''''''''''''' ''' ''''' ''''''''' ''''''''' ''''''''''''''' '''''''''''''''''''' ''''' '''''''' '''''''''''''''' ''''''''''''
''''''''''''''''''' ''''' ''''''' ''''''''''''''''''' ''''''''''''' ''''''''''''' '''''''' '''''''''''''''''' ''''''''''''''''''''''' '''''''''''''''''

'''''''''''''''''''' ''''''''''''' ''''' ''''''''''''''''' ''''''' '''''''''' '''' ''''''''''''' ''''' ''''''''''''''''' ''''''' ''''''''''''''''' '''''''''' '''' ''''''''''''''''
'''''''''''''''''''''''''' '''''''''''' ''''''''' ''''''''''' ''''' '''''''''''''''''''''''''''''' '''''''''' '''''''''''' '''''''''''''''' '''''''''''' '''''''''''''''''''''''' '''''''''''''''''' ''''
'''''''''' ''''' ''''''' ''''''''''''' '''' ''''''' ''''''''''''' '''''''' ''''''''''' ''''' '''''''''''''''' ''''''''''' ''''''''

 '''''''' ''''''''''''' '''''''''''''''''' ''''''''''''''''' '''''''' ''''''' '''''''''''''''''' ''''''''' '''''' ''''''''''''''''''''' '''' ''''''''''''''''' '''''''''''''''

'''''''''''''''''''''''''''''''''

'''''''''''''' '''''' '''''''''''''''' ''''''' '''''''''''''''' ''''''''''''''''' ''''''''''''''''' ''''' ''''''''''' '''''' ''''''''''''''''' ''''''''''''' '''''''''''''' ''''''
'''''''''''''''''''''''''''''''''' ''''''''''''''' ''''' ''''''' '''''''''''''''' ''''''''''''''' '''''''''' ''''''''''''''''''''''''' ''''''''' ''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 68 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''''''' ''''''' ''''''''''''''''' ''''''''''''''''''''''''''

'''''''''''''''''''''''''

''''''''''' '''''' ''''''''''''' '''''''''' ''''''' ''''''''' ''''''''''''''''''''' ''''''' ''''''' '''''''''''''''''' '''''''''''''' '''''''''''' ''''''' ''''' ''''''''' '''''''''''''''''''

''''''''''''''''''''''''''' '''''''' ''''''''' '''''''''''''''''''''

''''''''''''' ''''''' '''''' ''''''''''''''''''''''''''''''' ''''''''' '''''' ''''''' '''''''''''''''''' ''''''''''''''' ''''''' '''' '''''''' '''''''''''' ''''''''''''''' ''''''''''''''''
'''''''''''''' ''''''''''

''''''''''''''''''''''' ''''''''''''''''''''''' ''''''''''''''

''''''''''''''''''''''''''''''''''' '''' ''''''''''''' '''''''''''''''''''''''''

'''''''''''''' ''''''''''''''''''''''''' '''''''''''' '''''''''''''' '''' ''''''''''''''''''''''''' ''''''''

'''''''''''''''''''''''''''''''''

''''''''''''''''''''''''''''''''''' ''''''''''''''''''

'''''''''''' ''''''''' '''''''' ''''''''''''''''''''' '''''''''''''''''' ''''''''''''''''' '' ''''''''''''' ''''''''''''' ''''' ''''''''''' ''''''''''''''''''' '''''''''''''''''''' '''''
''''''''''''''' '''''''''''' ''''''''' ''''''''''''' '''''''' ''''''''''''''''''' ''''''''''' ''''''''' '''''''' '''''''''''''' ''''''''

''''''' ''''''''''''''''''''''

'''''''''''''''' ''''''' ''''''''''''''''' ''''''''''''' ''''''''' ''''''''''''' '' '''''''''''''''''' ''''''''''''' ''''' ''''''''''''''' ''''''''''''''''' ''''''''''''''''''''

''''''''''''' '''''''' '''''''''''' ''''''''''''' ''''''''''' ''''''' ''''''''''''''''''' ''''''''''''''''''''

'''''''' '''''' ''''''''''''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 69 of 96 Page 69 of 96
© Copyright 2012, the Members of the COMET

''''''''''''''''''''' ''' '''''''''''''''''''''''''''''' '''''''''''''' '''''''' ''' '''''''''' ''''''''''''''' '''''''''''''''''''' '''''''''''''' '''''''''''''''''''''''''''''''

'''''''' ''''' '''''''''''''''''''''''' ''''''

'''''''''''''''''' '''''' ''''''''''''''''''''' '''''''' '''''''''''''' '''''''' ''' '''''''''''''''''''''''''''''' '''''''''''' ''''''''''''''''' '''''''''''''

'''''''''''''''''''''''''''''

'''''''' ''''''' '''''' '''''''''''''''''''' ''''''''

''''''''''''''''' ''' ''''''''' ''''''''''' ''''''''' '' ''''' '''''''

''''''' '''''' ''''''' '''''''''''''''''' ''''''

''''''''''''''''''''' ''' '''''' '''''' '''''''' ''' '''''''' '''''''''''

''''''' '''' ''''''

''''''''''''''''''' '''''''''''''''''' '''' '''''''' '''''''''''''' ''''''''' ''''''' ''''''''''''' ''''' ''''''' '''''''''''''''''' '''''''''' '''''''' ''''''''''' '''''''''''''

''''''''''''''' ''''''' '''''''''''''' ''''''''''''' ''''''''' '''''''''''' ''''''' '''''''''''''''' '''''' ''''''''''''' '''' '''''''''

''''''' '''' ''''''''''''

'''''''''' ''''''' '''''''''''''''''' ''''''''''''''''''' ''''''''''''''''''' ''''' ''''''''''' ''''''''''''' ''''' ''''''''''''''''' ''''''''''''' '''''''''' '''''''''''

''''''''''''''''' '''''''''''' ''''''''' ''''''''''''''''''''''' '''''''''''''''''' ''''''' ''''''''''''' ''''''''' ''''''''''''''''' ''''''' '''''''''' ''''''''''''' '''' '''''''

''''''''''''''

''''''''''''''''''''''''''

''''''''''''''''''''''''' ''''''''''''''''''

''''''''''''''' '''''''''''''''''''''' ''''''''''''' ''''''''''''''' '''''''''' ''''''''''''''' ''''' '''''''' ''''''''''''''''''' '''''''''''' '''' '''''''''''''' '''
''''''''''''' '''''' '''''''''''''''''' '''''''''''''''''''''' ''''''''''''''''''''''''' ''''''''''''

'''''''''''''''''''''' ''''''' '''''''''''''''''' ''''''''' '''''''''''' '''''''''''' ''''''''' ''''''''''''''
''''''''''''' ''''''''''''' '''''''''''''''''''' ''''''''''''' ''''''''''' ''''''' '''''''''''' ''''''''''''''' '''''' '''''''''''''''' ''''' ''''''''''''' ''''''''' ''''''''''' ''''''''''''''''''
''''''' ''''''''''''' ''''' '''''''' ''''''''''' ''''''''''''''''''

''''''''''''''''''''' '''''''''' ''' '''''''''''''''''''''''' '''''' '''''''''''''''''' ''' ''''''''' '''''''''''''' ''''''''''''''''' ''''''' '''''''''''
'''''''''''''''''''''''''''' '''''''''''' '''''''''''''' '''''''' '''''''''''''' '''''''''''''''' '''''''''''' ''''''' '''''''''

''''''''''''''''''''''''''''''' '''''''''''''' '''''''' ''''''''''''' ''''''''''' '''''''''''''''''''' '''''''''' '''''''''''''' ''''''''' ''''''''' ''''''''''' '''' ''''''

''''''''''''' ''''' ''''''''' '''''''''''''''''''' ''''' '''''''' ''''''''''''''''' '''''' '''''''''''''''''''' '''''''''''' '''''''''''''''''''' ''''''''''
''''' ''''''''''

''''''''''''' ''''''''' '''''''''''' ''''''''''''''''''''''' ''''''''''''''''''''''''' '''''''' ''''''''''''''''''' ''''''''''' ''''' ''''''' ''''''''''''' '''''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 70 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

''''''''''''''' '''''' ''''''''''''''' ''''''''''''''''''''''''' ''''''''''''' '''''''''' ''''''''''''''''''

''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''

'''''''''' '''''''''''''''''''''''' '''''''''''' ''''''''''''''''''''' ''''' '''''''''' ''''''''''' ''''''''''' ''''''''''' ''''''''''''''''''' '''''''' ''''''''''' ''''''''''' '''''''' '''''''''''''
''''''''''''''''''' ''' ''''''''''''' ''''''' ''''''''''''''''' ''''' ''''''''' ''''''''''''''''''''' '''''' ''''''' '''''''''''' ''''''' ''''''''''''' ''''' ''''''' '''''''''''''''' ''''' '''''''
''''''''''''''' ''''''''''' '''''''' ''''''''''''' ''''' '''''''''''''''''''''

''''''''''''''''''''''' ''''''''''''''''''' ''''''''' '''''''''''

''''''' ''''''''''''' '''''''''''''''' ''''' ''''''''' '''''''''''

'''' ''''''' ''''''' ''''''''' ''''' '''''''''''''''' ''''''''''

'''''''''

''''''''''''' ''''''''''' '''''''''''''' ''''''''' ''''''

''''''''''''''''' '''' ''''''''' ''''''' ''''''''''''' '''

''''''''''''' ''''''''''''''''''' ''''' ''''''''''' ''''''''

''''''''' ''''''''''' ''''''''''''' '''''''' '''''''''''''

''''''''''''''''''''

'''''''''''''''''''''' ''''''''''''''''''' '''''''''''''''''''''

'''''''' ''''''''''''''''' '''''''''''''''' '''''''''''''' ''''''

'''''''''''''''''''''' '''''''''''''''''' ''''''''''''''' '''''

'''''' '''''''''''' '''''''' ''''''''''''' ''''''''

''''''''''''''''' '''' ''''''''''' '''''''''' '''''''''''' ''''''''

''''''''''''''''''' '''''''''' '''''''' ''''''''' ''''''''

''''''''''''''''''' '''''''''''''''''' '''''''' ''''' ''''''''''''

''''''' '''''''''''''''''''' ''''''''''' ''' '''''''''''

''''''''''''''''' ''''''''' ''''''''''''''''' ''''''''''''''''

'''''' ''''' ''''''''' '''''''' ''''''' '''''''''' ''''' ''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 71 of 96 Page 71 of 96
© Copyright 2012, the Members of the COMET

'''''''''' '''''''''''''''' ''''''''''' ''''''''''''' '''''''

''''''''''''''''''' ''''''''' '''''''''''''''''''''

''''''''''''''''' '''''' ''''' ''' '''''''' ''''''''' '''''''''''

'''''''''''''''''''''' ''''''''' ''''''''''''''''' '''''''

'''''''''' ''''''''''''''''''''''

''''''''' '''''''''''''' ''''' ''''''' '''''''''''''''''''' '''''''''''''''' ''''''''' '''''''' '''''''' '''' '''''''''''''''''' ''''' '''''''' ''''''''''''''''''''' ''''''''''''''''' ''''
''''''''''''' '''''''

''''''''''''''' ''''''' ''''''''''''''''''' ''''''''''''''''' ''''''''''''''''

''''''''''''''''''''''''''''' ''''''''' '''''''''' '''''''''''''''''''

''''''''''''' ''''''' ''''' ''' ''''''' '''''''''''''' '''''''''''''''''''''' ''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 72 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

6 Coupled Approach Entities

6.1 Content Resolution and Mediation Entity

6.1.1 Description of overall functionality

In the coupled approach, the content resolution and mediation entity (CRME) is the main entity in
coordinating the publication, resolution and delivery of content. It interfaces with the following
entities:

 Local content clients (CCs)

 Routing Awareness Entity (RAE)

 Its neighbor CRMEs

 Local content-aware forwarding entities (CAFEs)

 Local content publishers (indicating the corresponding content servers (CSs))

CRME’s main functionality includes:

 Handling content publication messages from local content publishers (i.e., the Register
message)

 Handling content registration messages from neighbouring CRMEs (i.e., the Publish
message)

 Handling content requests from local CCs and neighbouring CRMEs (i.e., the Consume
message)

 Configuring the related CAFEs within the domain for the delivery of requested content

 Managing and maintaining the content management repository

 Receiving NLRI from RAE

6.1.2 Interfaces

Communication between CRME and other entities is carried out over four main types of interfaces:
an inter-CRME interface, a CRME-CC interface, a CRME-CS interface and a CRME-CAFE
interface. In the following subsections, we provide a detailed description of these interfaces and the
communication methods used across them.

6.1.2.1 Inter-CRME Interface

The inter-CRME interface is that over which control-plane messages are exchanged between the
neighbouring CRMEs, namely, the Publish, Consume, and Error messages, the descriptions of
which are given in Table 6-1. Figure 53 illustrates the communication between two neighbouring
CRMEs.

Table 6-1: Inter-CRME interface messages

Message Information Passed Description

Publish - contentID

Sent by a CRME to its provider CRME following the
provider router forwarding route when a content is
being published.

Consume - contentID

Sent by a CRME to its provider CRME(s) based on
the provider route forwarding route to locate the
requested content.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 73 of 96 Page 73 of 96
© Copyright 2012, the Members of the COMET

Error - contentID
Initiated by a tier-1 CRME when the requested
content cannot be found.

Figure 53: Inter-CRME communication.

6.1.2.2 CRME-CC Interface

This interface enables the communication between content consumers with their local (or
immediate) CRME. There are two types of message being exchanged between these two entities;
namely Consume and Error messages, the descriptions of which are given in Table 6-2. Figure 54
illustrates the communication between a CRME and a CC.

Table 6-2: CRME-CC interface messages

Message Information Passed Description

Consume - contentID
Sent by a content consumer to its local CRME for
requesting a content.

Error - contentID
Forwarded by the local CRME to the original content
consumer indicating that the requested content
cannot be found / unavailable.

Figure 54: CRME-CC communication.

6.1.2.3 CRME-CS Interface

This interface enables the communication between content publishers (along with its content
servers) with their local (or immediate) CRME. There are two types of message being exchanged
between these two entities; namely Register and Consume messages, the descriptions of which
are given inTable 6-3. Figure 55 illustrates the communication between a CRME and a CP/CS.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 74 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Table 6-3: CRME-CS interface messages

Message Information Passed Description

Register - contentID
Sent by a content publisher to its local CRME to
publish a content.

Consume - contentID
Forwarded by the local CRME to the content server
hosting the requested content (i.e., the requested
content has been found).

Figure 55: CRME-CS communication.

6.1.2.4 CRME-CAFE Interface

The CRME-CAFE interface is that over which control-plane messages are exchanged between the
CRME and CAFE, namely, the Announce, Configure, and Notify messages, the descriptions of
which are given in D4.3 [5] where the relevant content delivery operations handled by CAFE are
described.

6.1.3 Design

Being the main entity in the coupled approach, the CRME is involved in every aspect of the content
lifecycle beginning from content publication to resolution and finally the delivery of the content. In
this section, the design of the content publication and resolution processes handled by CRME is
described.

Figure 56 shows the class diagram of the proof-of-concept implementation of the coupled
approach, which consists of four main classes corresponding directly to the four main COMET
entities used for the coupled approach. These classes are the Crme, ContentServer,

ContentConsumer, and Cafe.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 75 of 96 Page 75 of 96
© Copyright 2012, the Members of the COMET

Crme

+init(args[])

+start()

+stop()

+run()

+processRegister(pkt)

+processPublish(pkt)

+processConsume(pkt)

+processAnnounce(pkt)

+processNotify(pkt)

+displayContentTable()

+displayNextHopDomains()

+getAddressPrefix(addr)

ContentServer

+init(args[])

+start()

+stop()

+run()

+sendRegister(ContentID)

+processConsume(pkt)

+sendContent(pkt)

ContentClient

+init(args[])

+start()

+stop()

+run()

+sendConsume(ContentID)

+processContent(pkt)

Cafe

+init(args[])

+start()

+stop()

+run()

+sendAnnounce()

+processConfigure(pkt)

+processContent(pkt)

+displayContentStateTable()

+getAddressPrefix(addr)

Figure 56: UML class diagram of the coupled approach proof-of-concept emulator
implementation

The Crme class contains three main functions related to content mediation:

 processRegister(pkt)– processes Register messages by creating the relevant entries

in the ContentTable and forwarding a Publish message to the next-hop CRME.

 processPublish(pkt) – processes Publish messages by creating the relevant entries

in the ContentTable and forwarding the message to the next-hop CRME.

 processConsume(pkt) – processes Consume messages it receives by looking up in its

ContentTable the next-hop CRME to which to forward the Consume message. If an entry
for the content requested does not exist in the ContentTable, the Consume message is
forwarded to a parent CRME according to the resolution rules specified in D3.2 [3].

The following functions are specific to the proof-of-concept emulator for the purpose of textual
display during run time:

 displayContentTable() – prints to screen all entries in its ContentTable.

 displayNextHopDomains() – prints to screen information about its neighbouring

CRMEs.

Figure 57 shows the UML state diagram illustrating the design of the CRME class, in particular the
parts of that class relating to content publication and resolution. The parts related to content
delivery and route optimisation are described in D4.3 [5].

Once initialised, the CRME is put to idle state and wait for incoming messages.

For the content publication process, two messages are involved; namely the Register and
Publish message. If the CRME receives a Register message, it will first create a new entry for

this content (indicated by the message) in its contentTable. A Publish message will then be
created with the same content ID and forwarded to its provider CRME. The CRME will follow

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 76 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

similar operations if a Publish message is received (only that instead of creating a new Publish
message, the received message is forwarded without modifications).

A content resolution process is initiated once a content consumer sends a Consume message.
When a CRME receives a Consume message, it first checks its contentTable if there is a
matching entry for the requested content. If a matching entry is found, then after sending the
appropriate configuring information through a Configure message to the involved CAFEs, it will
forward the Consume message to the next CRME towards the content server as indicated in its
contentTable (i.e., the corresponding nextHopAddr). The handling of the Configure
messages by CAFE is detailed in D4.3 [5]. If, however, the content is not found in this CRME (i.e.,
no matching entry is found), then the Consume message will be forwarded based on the provider
route forwarding rule. Essentially, the Consume message will be forwarded to the provider CRME.

The relevant states for this content request will be installed at the relevant CAFEs via Configure
messages. In the case where the content is still not found at the tier-1 level, then the tier-1 CRME
will create an Error message to be forwarded back to the content consumer.

Figure 57: UML state diagram for content publication and resolution aspects of the CRME.

The CRME entity is started using the following command format (in the startup xml script):

+time ON_ROUTER router_addressusr.curling.Crme myport nneighbourdomain

<neighbourCRMEaddr, rel, neighbourCRMEport> nCAFE <CAFEaddr, CAFEport>

nPrefixes <Prefix NextHopCrmeNextHopCafe>

where:

router_address = the address or name of the current virtual router

myport= the port used by this CRME

Initialising
CRME

Waiting for
Message

‘Register’ Msg
Received

‘Publish’ Msg
Received

Updating content table

add entry to 'ContentTable'

‘Consume’ Msg
Received

‘Error’ Msg
Received

Updating content table

add entry to 'ContentTable'

‘Publish’ Msg
created with the
corresponding

contentId and sent
to provider CRME

‘Publish’ Msg sent
to provider CRME

[content found] [content not found]

‘Consume’ Msg
sent to provider

CRME

[Provider
CRME
exists]

[No provider
CRME]

'Error' Msg created with
the corresponding

contentId and sent to
the previous CRME.

'Configure' Msg
created with the
corresponding

contentId and sent to
the relevant CAFE.

Forward 'Consume'
Msg to content

server.

Forward ‘Error’ Msg
to the next CRME.

'Configure' Msg
created with the
corresponding

contentId and sent to
the relevant CAFE.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 77 of 96 Page 77 of 96
© Copyright 2012, the Members of the COMET

nneighbourdomain = number of domains directly linked to this domain

<neighbourCRMEaddr, rel, neighhourCRMEport> = nneighbourdomain x tuple of the
address of the neighbour CRME, the inter-domain relationship (either provider, customer or peer)
and the neighbour CRME port.

nCAFE= number of CAFEs within the domain

<CAFEaddr, CAFEport>= the duple of the local CAFE address and port

nPrefixes = number of entries in the CRME’s Loc-RIB (BGP) table

<Prefix,NextHopCrme,NextHopCafe> = nPrefixes x tuple of the address prefix of a domain,
the address of the next hop CRME and next-hop CAFE towards the destination domain,
respectively.

In the implementation of the CRME entity, there exists two tables:

(1) Content management repository (ContentTable)

ContentID <NextHopCRMEaddr, NextHopCRMEport>

(2) BGP (Loc-RIB) routing table (RoutingTable)

DomainPrefix <NextHopCRMEaddr, NextHopCAFEaddr>

(3) CRME-level forwarding table (NextHopDomains)

NextHopDomain
<LocalCAFEaddr, NextHopCAFEaddr,

NextHopCAFEport>

where

ContentID = the string identifier of the content

NextHopCRMEaddr = the address of the next-hop CRME

NextHopCRMEport = the port number of the next-hop CRME

DomainPrefix = the address prefix of the destination domain

LocalCAFEaddr= the address of the local egress CAFE involved in the delivery of the content

NextHopCAFEaddr= the address of the CAFE directly connected to the local CAFE via the inter-
domain link for this specific content delivery

NextHopCAFEport= the corresponding port used by the next CAFE

6.1.4 Testing and test scenarios

6.1.4.1 Basic Content Publication Operation

To test the content publication operation, an inter-domain topology shown in Figure 58 and Figure
59 are setup. The test simply involves content server attached to 5.3 registering different content
(i.e., issuing Register messages for different content).

This enables the validation of the following:

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 78 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 The correct forwarding of Register messages from CP to its local CRME (via intermediate

CAFE(s))

o The Register message should traverse from CP to node 5.1 via node 5.3 for test

topology 1 and node 7.1 via node 7.3 for test topology 2.

 The correct handling of Register messages at the local CRME (i.e., node 5.3 in test

topology 1 and node 7.3 in test topology 2)

o The local CRME should be able to create a new entry in its contentTable for each

new content being registered.

 The correct creation of the Publish messages from local CRME

o The content ID must be the same as the corresponding Register message.

 The correct forwarding of the Publish messages

o Test topology 1: The Publish messages should be forwarded following the provider

route forwarding rule (i.e., node 5.1 node 5.2 node 3.3 node 3.1 node 3.2

node1.3 node 1.1)

o Test topology 2: The Publish messages should be forwarded following the

provider route forwarding rule (i.e., node 7.1 node 7.2 node 4.3 node 4.1

node 4.2 node 1.4 node 1.1)

 The correct handling of Publish messages at each CRME

o Each CRME receiving the Publish messages should be able to create a new entry in

its contentTable for each new content being published.

CONSUME

{Content1}

REGISTER

{Content1)

1.1

1.2 1.3

2.1

2.2

4.2

4.1

4.3

3.2

3.3

3.1

5.1

5.2

5.3

2.3

Content

Consumer Content

Server

Tier-1

Tier-2

Tier-2

Tier-3

Figure 58: Test topology 1.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 79 of 96 Page 79 of 96
© Copyright 2012, the Members of the COMET

CONSUME

{Content1}

1.1

1.2

1.3

2.1

2.2

5.2

5.1

5.3

3.2

3.3

3.1

6.1

6.2

6.3

2.3

Content

Consumer
Content

Server

Tier-1

Tier-2

Tier-2

Tier-3

4.2

4.3

4.1

7.1

7.2

7.3

1.4

REGISTER

{Content1}

CRME

CAFE

Figure 59: Test topology 2.

6.1.4.2 Basic Content Resolution Operation

To test the content resolution operation, an inter-domain topology shown in Figure 59 is setup. It is
initialized with a single content (i.e., Content1) being published as shown in the figure. The test
involves attaching CC at different points of the network and requesting for the content.

This enables the validation of the following:

 The correct forwarding of Consume messages from CC to the CP via intermediate CRME(s)

o The Consume message should follow the provider route forwarding rule while the
requested content is still not found.

o The Consume message should follow the entry in the CRMEs’ contentTable once
the requested content is found.

Note that the relevant validation of the configuration of forwarding states at CAFEs is detailed in
D4.3 [5].

6.2 Content Publisher

6.2.1 Description of overall functionality

The content publisher is implemented to enable content publication in the PoC. In our PoC,
content publisher and content server are assumed to be co-located. As such, this implementation
includes both the facility to publish a content (describe in this document) and to serve content
requests (describe in D4.3 on content delivery under the coupled approach).

CP’s main functionality includes:

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 80 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 Creating and transmitting content publication messages (i.e., the Register message)

 Handling content requests from local CRME (i.e., the Consume message)

 Transmit requested content after receiving a valid Consume message.

6.2.2 Interface

In the coupled approach, a content publisher only has a specific interface with its local CRME. It
may also have link to one or more CAFE(s) in its domain. However, communication with CAFEs is
limited to content transference. The description of the CC-CRME interface is given in section
6.1.2.3.

6.2.3 Design

The ContentServer class contains two main functions related to content publication and
consumption:

 sendRegister(ContentID) – sends a Register message to its local CRME to register

content with the passed ContentID.

 processConsume(pkt) – processes Consume messages it receives and reads the

ContentID being requested.

Figure 60 shows the UML state diagram for CP. Immediately after initialisation, a CP will publish
its content by creating the necessary Register message(s). The local CRME is then responsible
for forwarding and publishing the content.

Then, it comes to an idle state, waiting to serve any content requests (i.e., Consume message

requesting its content). When it receives a Consume message, it will then start transmitting the
requested content to its immediate CAFE. Note that it does not know the route to or the identity of
the CC requesting its content. The entire delivery of the content relies on the correct coordination
of CRMEs and CAFEs via the content publication and resolution processes.

Figure 60: UML state diagram for a CP.

The content publisher entity is started using the following command format (in the startup xml
script):

+time ON_ROUTER router_addressusr.curling.ContentServer targetCRMEaddr

myport targetCRMEport contentname where:

router_address= the address or name of the current virtual router

targetCRMEaddr= the router name of the local CRME

Waiting for
Message

' Consume'

Msg ReceivedInitialising
CP

' Regi st er ' Msg

created and sent to
the local CRME

Cont ent Msg

forwarded to
next hop CAFE

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 81 of 96 Page 81 of 96
© Copyright 2012, the Members of the COMET

myport = the port used by the content publisher

targetCRMEport= the port used by the local CRME

contentname = the name of the content being registered

6.2.4 Testing and test scenarios

6.2.4.1 Registering content

To test the content registration capability of CP, we setup multiple CPs connected to a CRME via an
intermediate CAFE. These CPs then send Register messages to the CRME.

This enables the validation of the following:

 The correct creation of Register messages.

6.3 Content Client

6.3.1 Description of overall functionality

The content client is implemented to enable content resolution in the PoC.

CC’s main functionality includes:

 Creating and transmitting content consumption messages (i.e., the Consume message)

 Receive and storing corresponding content after issuing a valid Consume message.

6.3.2 Interface

In the coupled approach, a content client only has a specific interface with its local CRME. It may
also have link to one or more CAFE(s) in its domain. However, communication with CAFEs is
limited to content transference. The description of the CS-CRME interface is given in section
6.1.2.2.

6.3.3 Design

The ContentClient class contains one main functionrelated to content mediation:

 sendConsume(ContentID) – sends a Consume message to the its local CRME requesting

content with the passed ContentID.

Figure 61 shows the UML state diagram for CC. Immediately after initialisation, a CC will request a
content by creating the necessary Consume message. The local CRME is then responsible for

forwarding this Consume message to find the content.

Then, it comes to an idle state, waiting for the requested content. Once the requested content is
received, it will save it into the disk.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 82 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

Figure 61: UML state diagram for a CC.

The content client entity is started using the following command format (in the startup xml script):

+time ON_ROUTER router_nameusr.curling.ContentClient targetCRMEaddr

myport targetCRMEport contentname where:

router_address = the address or name of the current virtual router

targetCRMEaddr= the router name of the local CRME

myport = the port used by the content client

targetCRMEport= the port used by the local CRME

contentname = the name of the content being requested

6.3.4 Testing and test scenarios

6.3.4.1 Requesting content

To test the content request capability of CC, we setup multiple CCs connected to multiple CPs via
an intermediate CRME (with CAFE co-located at the same node). The test is initialised with the
CPs registering some content at the CRME. Then, the different CCs will start requesting for the
registered content.

This enables the validation of the following:

 The correct creation and transmission of Consumemessages.

Waiting for
Content

Cont ent

ReceivedInitialising
CC

' Consume' Msg

created and sent to
the local CRME

St or e Cont ent

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 83 of 96 Page 83 of 96
© Copyright 2012, the Members of the COMET

7 Conclusions

This deliverable presented the final set of implementation details for the content mediation plane
(CMP) in the overall COMET architecture and the respective implementation of both specified
approaches. It fully utilizes the COMET architecture presented in D2.2 [1], and specified CMP
mechanisms included in D3.2 [3].

Hence, this deliverable presented the set of detailed interfaces offered and used by all COMET
architecture entities and components of CMP for the final releases of both approaches, as well as
provided the final documentation of the implemented components and functionalities, offering the
possibility to extend any COMET component.

Most high-level CMP entities were implemented in Java because it is a high-level and platform-
independent OO language, while for the edge (CC) and network (lower-level) elements (RAE and
CAFE) of COMET system, C++ was selected, due to its higher performance. A justification for all
implementation choices was provided. These choices were made considering the higher aim of
rapid implementation cycles, rapid integration cycles and development of an efficient prototype for
validating and testing all specified mechanisms of the COMET system. Although certain
improvements and alterations would be required in order to meet production requirements, all
CMP entities could be easily deployed in existing systems, without disrupting their operation.

With regard to the interfaces, proprietary protocols on top of UDP were implemented for the edges
of the COMET system. The established Handle protocol was preferred for the CRE, due to its
content-oriented nature. Finally, Google’s protobuf was used for all other interfaces between
COMET entities, aiming to build a robust, homogeneous and efficient content mediation system. In
addition, all COMET entities were designed and developed to be deployed in both IPv4 and IPv6
environments, but not in mixed ones, leading to an easily-deployable system to existing and future
network environments.

The final documentation of CFP components and interfaces is described in D4.3 [5]. Details about
the integration technologies and procedures used to develop, integrate and test the COMET
software will be included in forthcoming deliverable D5.1. The aim of D5.1 will be to document the
integration procedure applied and the conducted system tests, resulting in a commercially
integrated and tested software, following industry standards.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 84 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

8 References

[1] Comet Deliverable D2.2 High level Architecture of the COMET System

[2] Comet Deliverable D3.1 Interim Specification of Mechanisms, Protocols and Algorithms for
the Content Mediation System

[3] Comet Deliverable D3.2 Final Specification of Mechanisms, Protocols and Algorithms for the
Content Mediation System

[4] Comet Deliverable D4.2 Final Specification of Mechanisms, Protocols and Algorithms for
Enhanced Network Platforms

[5] Comet Deliverable D4.3 Prototype Implementation and System Integration Interfaces for
Enhanced Network Platforms

[6] http://www.ietf.org/rfc/rfc3650.txt

[7] http://www.ietf.org/rfc/rfc3651.txt

[8] Jboss Netty NIO client server framework: http://www.jboss.org/netty

[9] Jetty web server: http://jetty.codehaus.org/jetty/

[10] MySQL Database: http://www.mysql.com/

[11] Handle System software: http://www.handle.net/

[12] Protobuf buffers: http://code.google.com/p/protobuf/

[13] JUnit testing framework: http://www.junit.org/

[14] Open source Java persistence framework project: http://www.hibernate.org/

[15] Apache Tomcat web server: http://tomcat.apache.org/

[16] VLC open source cross-platform multimedia player: http://www.videolan.org/vlc/

[17] μTorrent lightweight BitTorrent client: http://www.utorrent.com

[18] Apache MINA network application framework: http://mina.apache.org/

[19] JBoss Application Server: http://www.jboss.org/jbossas

[20] Glassfish Application Server: http://glassfish.java.net/

[21] Hibernate ORM framework: http://www.hibernate.org/

[22] JBoss Richfaces: http://www.jboss.org/richfaces

[23] “Connecting IPv6 Routing Domains Over the IPv4 Internet”, Carpenter et al., The Internet
Protocol Journal, Volume 3, Number 1, March 2000.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 85 of 96 Page 85 of 96
© Copyright 2012, the Members of the COMET

9 Abbreviations

API Application Programming Interface

BR Bit Rate

BGP Border Gateway Protocol

CAFE Content-Aware Forwarding Entity

CC Content Client

CFP Content Forwarding Plane

CME Content Mediation Entity

CMP Content Mediation Plane

CoS Class of Service

CP Content Publisher

CRE Content Resolution Entity

CRME Content Resolution and Mediation Entity

CS Content Server

DAO Data Access Object

DB Database

DNS Domain Name System

DTO Data Transfer Object

HS Handle System

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IPLR IP Loss Ratio

IPTD IP Transfer Delay

JVM Java Virtual Machine

NLRI Network Level Routing Information

OS Operating System

PoC Proof of Concept

RAE Routing Awareness Entity

SA Server Awareness

SMA Server Monitoring Agent

SNME Server and Network Monitoring Entity

STREP Specific Targeted Research Project

TCP Transmission Control Protocol

TTL Time to live

UDP User Datagram Protocol

UML Unified Modelling Language

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 86 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

10 Acknowledgements

This deliverable was made possible due to the large and open help of the WP3 team of the COMET
project within this STREP, which includes besides the deliverable authors as indicated in the
document control. Many thanks to all of them.

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 87 of 96 Page 87 of 96
© Copyright 2012, the Members of the COMET

11 Appendix

11.1 Application and Transport Protocol codification

11.1.1 Application Protocol

11.1.2 Transport Protocol

Hex code Protocol Hex code Protocol Hex code Protocol

0x01 http:// 0x0C telnet:// 0x17 tcpobex://

0x02 https:// 0x0D imap: 0x18 irdaobex://

0x03 tel: 0x0E rtsp:// 0x19 file://

0x04 mailto: 0x0F urn: 0x1A urn:epc:id:

0x05 ftp:// 0x10 pop: 0x1B urn:epc:tag:

0x06 ftps:// 0x11 sip: 0x1C urn:epc:pat:

0x07 sftp:// 0x12 sips: 0x1D urn:epc:raw:

0x08 smb:// 0x13 tftp: 0x1E urn:epc:

0x09 nfs:// 0x14 btspp:// 0x1F urn:nfc:

0x0A dav:// 0x15 btl2cap://

0x0B news: 0x16 btgoep://

Hex code Protocol Hex code Protocol

0x00 Hopopt 0x08 EGP

0x01 ICMP 0x09 IGRP

0x02 IGMP 0x11 UDP

0x03 GGP 0x29 IPv6 over IPv4

0x04 IP in IP encapsulation 0x2E RSVP

0x05 ST 0x2F GRE

0x06 TCP 0x59 OSPF

0x07 UCL, CBT … …

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 88 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

11.2 Interfaces specification

11.2.1 CME-CC

11.2.1.1 Query message

Octet 1 Octet 2 Octet 3 Octet 4

+0 ID
Q

R
IT Z Rcode

+4 QDCOUNT ANCOUNT

+8 NSCOUNT ARCOUNT

ID

Q

R
Z Rcode

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

QUERY

ANSWER

Octet 1 Octet 2 Octet 3 Octet 4 … Octet n

+0 QNAME

+n QTYPE QCLASS

ID

Q

R
Z Rcode

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

QUERY

ANSWER

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 89 of 96 Page 89 of 96
© Copyright 2012, the Members of the COMET

11.2.1.2 Response

11.2.2 CME-RAE

package comet.cmerae;

option java_package = "eu.comet.raeprotoc";

option java_outer_classname = "RaeProtoc";

message GenericRequest {

 enum Type {

 RESET = 1;

 VERSION = 2;

 INSERT_PROVISIONING = 3;

 REMOVE_PROVISIONING = 4;

 INSERT_PATHS = 5;

 REMOVE_PATHS = 6;

 }

 required Type type = 1;

 optional ProvInfprov = 2;

 optional PathInf path = 3;

}

message QoSParameters {

 optional float packet_delay = 1;

 optional float packet_loss = 2;

 optional float supported_bandwidth = 3;

}

message DomainEdge { // modes A and B are exclusive

 // mode A: peering number is set

 optional int32 peering_as_number = 1;

 // mode B: access network prefix is set

 optional int32 prefix_length = 2;

 optional bytes prefix = 3;

}

message ProvInf {

 required DomainEdge source = 1;

 required DomainEdge sink = 2;

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 90 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 required string class_name = 3;

 optional QoSParametersqosparams = 4;

}

message Prefix {

 required int32 prefix_length = 1;

 required bytes prefix = 2;

}

message Path {

 repeated int32 as = 1 [packed=true];

 optional QoSParametersqosparams = 2;

 required int32 edge_as = 3;

}

message PathInf {

 required Prefix prefix = 1;

 required string class_name = 2; // e.g., BE, BTBE, PR, PR-L(ive), PR-

R(ecorded), ...

 repeated Path paths = 3;

}

message Reply {

 required string version = 1;

 optional bool error = 2;

}

'''''''''''''''''''''''''''''''''

''''''' '''''''''''''''

'''''' ''''''''''''' '' ''''''''''''''''''''

''''''' '''''''''''''''''''' ' '''''''''''''

''''''' '''''''''''''''''' '

 ''''''''' ''''' '''''''''' '' ''

 '''''''' ''''' '''''''''''' ' '''

 '''''''' ''''''' '''''' ' ''

''

''''''' ''''''''''''''''''' ''

 ''''''''' ''''' '''''''''' ' ''

 '''''''' ''''' ''''''''''' ' ''

 ''''''''' '''''''''''''''' '''''''''' ' ''

'

''''''' ''''''''''''' '

 '''''''' ''''''' ''''' ' '''

 ''''' ''''''' ''

'''' '' '''

'''''' '' ''

''''' ' '''

'''' '' ''

 ''

 '''''''' '''''' '''''' '' '''

''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 91 of 96 Page 91 of 96
© Copyright 2012, the Members of the COMET

11.2.3 CME-CAFE

package comet.cmecafe;

option java_package = "eu.comet.cme.controller.cafeif";

option java_outer_classname = "CafeProtoc";

message GenericRequest {

enum Type {

 CONFIGURE_STREAM = 1;

 COLLECT_EXPIRED_STREAMS = 2;

 };

 required Type type = 1;

 optional ConfigureStreamMessage configure = 2;

 optional CollectExpiredStreamsMessage collect = 3;

}

message ConfigureStreamMessage{

 required int32 id = 1;

 required Filter filter = 2;

 required int32 bandwidth = 3;

 required string cos = 4;

 required bytes key = 5;

 required int32 refresh_time = 6;

 repeated int32 as_path = 7;

}

message Filter {

 optional string ip_source = 1;

 optional string ip_destination = 2;

 optional int32 protocol = 3;

 optional int32 port_source = 4;

 optional int32 port_destination = 5;

}

message CollectExpiredStreamsMessage {

}

message GenericResponse {

enum Type {

 CONFIGURE_STREAM_RESULT = 1;

 COLLECT_EXPIRED_STREAMS_RESULT = 2;

 };

required Type type = 1;

optional ConfigureStreamResult configure = 2;

optional CollectExpiredStreamsResult collect = 3;

}

message ConfigureStreamResult {

enum Type {

 CAFE_SUCCESS = 1;

 CAFE_FAILURE = 2;

 };

 required int32 id = 1;

 required Type result = 2;

 optional string description = 3;

}

message CollectExpiredStreamsResult {

 repeated StreamInformation id = 1;

}

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 92 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

message StreamInformation {

 required int32 id = 1;

 optional Filter filter = 2;

 optional int32 bandwidth = 3;

 required string cos = 4;

 repeated int32 as_path = 5;

 optional int64 transferred_bytes = 6;

 optional int32 duration = 7;

}

11.2.4 inter-CME

package comet.intercme;

option java_package = "eu.comet.cme.controller.cmeif";

option java_outer_classname = "InterCmeProtoc";

message GenericRequest {

 enum Type {

 RETRIEVE_PATHS= 1;

 PROCESS_SERVER = 2;

 PROVISION_PATH = 3;

 SERVER_LOAD = 4;

 }

 required Type type = 1;

 repeated RetrievePathsRequest retrieve_request = 2;

 optional ProcessServerSideRequest process_request = 3;

 optional ProvisionPathRequest provision_request = 4;

 repeated ServerLoadRequest load_request = 5;

}

message GenericResponse {

 enum ResponseType {

 RETRIEVE_PATHS= 1;

 PROCESS_SERVER = 2;

 PROVISION_PATH = 3;

 SERVER_LOAD = 4;

 }

 required ResponseType responsetype = 1;

 repeated RetrievePathsResponse retrieve_response = 2;

 optional ProcessServerSideResponse process_response = 3;

 optional ProvisionPathResponse provision_response = 4;

 repeated ServerLoadResponse load_response = 5;

}

message QoSParameters {

 optional float packet_delay = 1;

 optional float packet_loss = 2;

 optional float bw = 3;

}

message RetrievePathsRequest {

 optional string client_ip = 1;

 optional string server_ip = 2;

 optional string cos = 3;

}

message RetrievePathsResponse {

 optional string status = 1;

 repeated Path paths = 2;

 optional string server_ip = 3;

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 93 of 96 Page 93 of 96
© Copyright 2012, the Members of the COMET

}

message Prefix {

 optional int32 prefix_length = 1;

 optional string prefix = 2;

}

message Path {

 repeated int32 as = 1 [packed=true];

 optional Prefix source = 2;

 optional Prefix destination = 3;

 optional QoSParameters qosparams = 4;

}

message ProcessServerSideRequest {

 repeated int32 as = 1 [packed=true];

 optional string client_ip = 2;

 optional string server_ip = 3;

 optional string trans_protocol = 4;

 optional int32 trans_port = 5;

 optional int32 bw = 6;

 optional string cos = 7;

 repeated string key = 8;

}

message ProcessServerSideResponse {

 optional string status = 1;

}

message ProvisionPathRequest {

 repeated int32 as = 1 [packed=true];

 optional string cafe_ip = 2;

 optional int64 bw_aggregate = 3;

 optional string cos = 4;

 repeated string key_new = 5;

}

message ProvisionPathResponse {

 optional string status = 1;

 optional string cos = 2;

 repeated string key_new = 3;

}

message ServerLoadRequest {

 optional string server_ip = 1;

}

message ServerLoadResponse {

 optional string server_ip = 1;

 optional int32 server_load = 2;

}

'''''''''''''''''''''''''''''''

''''''''''''''''''''''''''''''''' ''''''''''''''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 94 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

'''''''''''''''''''''' '''''''''' ''''''''''''''

11.3 Databases Specification

'''''''''''''''''''''''''' '''''''''''''''

''' '''''' '''''' '''' ''

''''''' ''''''' '''''' ''

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Version 7.1 Page 95 of 96 Page 95 of 96
© Copyright 2012, the Members of the COMET

'' ''''' ''''''''''''' '''

'''''' '''''' ''''''''''''''''''''' '

 ''''''''''''' '''' '''' '''' '

 '''''''''''' ''''''''''' '''' ''''' '

 '''''''' ''' ''''''''''''''

 '''''' '''''' '''''''''''''''''' ''''''''''''' ''''''

'' ''''' '''''''''''''''''' '''

''''''' ''''' ''''''''''''''''''''''''' '

 ''''''' ''' ''' ''''' '''''''''''''''

 ''''''' '''''''''''' ''' '''' ''

 ''''''' '''' '''''''''' ''''''''''

 '''''' '''''' '''''''''''''' '''''''' '''''''

'' ''''' ''''''''''''' '''

'''''' ''''' ''''''''''''''''''''''''' '

 ''''''' ''' '''' ''''' ''''''''''''''''

 ''''''' ''''''''''' ''' ''''' '

 ''''''' '''' ''''''''''

 '''''' '''''' ''''''''''''' '''''''' ''''''

 '' ''''' ''''' ''

'''''' '''''' '''''''''''''' '

 ''''''''''' '''' '''' ''''''

 ''''''''''' ''' '''' '''' ''

 ''''''' ''' '''''''''''' '''''''''''

 ''''' '''''''''''''''''' ''''''''''' ''''' ''

 ''''' ''''''''''''''' '''''''''''' '''' ''

 '''''''''' '''''''''''''''

 '''''''' '''' ''''''''''' '

 '''''''''' ''''''''''''''''''''''''' ''''''''' ''

 '' '''''' ''' ''''''

 ''' ''''''' '' '''''''

 '''''''''' '''''''''''''''''

 '''''''' ''' ''''''''''''' '

 ''''''''''' '''''''''''''''''''''' '''''''' ''

 '' '''''' '' '''''''

 ''' '''''' ''' '''''''''

''' '''''' ''''''''''''''' ''

'''''' '''''' ''''''''''''''''''''' ''

 ''''''''''''' '''' '''' ''''' '

 '''''''''''''''''' '''' ''' ''''' ''

 '''''''''''''''' '''''''''''' '''' ''''' ''

 '''''''' '''' '''''''''''''' '

 ''''' '''''''''''''''''''' '''''''''''''' '''' '

Seventh Framework STREP No. 248784 D3.3 Prototype Implementation and System Integration...
Commercial in Confidence

Page 96 of 96 Version 7.1 Version 2.0
© Copyright 2012, the Members of the COMET Consortium

 ''''' ''''''''''''''''''' '''''''''''''''''' '''' '

 '''''''''' ''''''''''''''''''

 '''''''' ''' '''''''''''''' ''

 '''''''''' ''''''''''''''''''''''' '''''''' '

 '' ''''''' ''' ''''''

 ''' ''''''' '' '''''''

 ''''''''''' ''''''''''''''''''''

 ''''''' '''' ''''''''''''''''' ''

 '''''''''' ''''''''''''''''''''''''' ''''''''''''' '

 ''' '''''' ''' '''''''

 ''' '''''' '' ''''''''

'' '''''' '''''' '''''''''''''''' '''

''''''' '''' ''''''''''''''''''''''' ''''''''''''' ''''''''''''''' '''''' ''' ''''''''

'''''' '''' ''''''''''''''''''''' '''''''''''' ''''''''''''''' '''''' '''' '''''''''''

'''''' '''' ''''''''''''''''''''''' ''''''''''''' '''''''''''''' ''''''' '''' '''''''''

''''''' '''' '''''''''''''''''''''''''' '''''''''''''' '''''''''''''' ''''''' '''' '''''''''''

''''''' '''' ''''''''''''''''''''''''' ''''''''''''' ''''''''''''''' ''''''' '''' '''''''''

